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Abstract—Nowadays, cardiovascular disease (CVD) has be-
come a disease of the majority. As an important instrument for
diagnosing CVD, electrocardiography (ECG) is used to extract
useful information about the functioning status of the heart. In
the domain of ECG analysis, cluster analysis is a commonly
applied approach to gain an overview of the data, detect outliers
or pre-process before further analysis. In recent years, toprovide
better medical care for CVD patients, the cardiac telehealth
system has been widely used. However, the extremely large
volume and high update rate of data in the telehealth system
has made cluster analysis challenging work. In this paper, we
design and implement a novel parallel system for clustering
massive ECG stream data based on the MapReduce framework.
In our approach, a global optimum of clustering is achieved by
merging and splitting clusters dynamically. Meanwhile, a good
performance is gained by distributing computation over multiple
computing nodes. According to the evaluation, our system not
only provides good clustering results but also has an excellent
performance on multiple computing nodes.

I. I NTRODUCTION

According to the latest research from the medical society,
cardiovascular disease (CVD) has become a disease of the ma-
jority. Nowadays, more than one in three people are suffering
this kind of disease in the United States [1]. As an impor-
tant instrument for diagnosing CVD, the electrocardiography
(ECG), a transthoracic interpretation of the electrical activity
of the heart over a period of time, can be used to extract useful
information about the functional status of the heart [2]. Tohelp
clinicians better utilize the ECG data, a variety of systemshave
been proposed, especially in recent years, as healthcare costs
continue to increase, resources within the health sector are
being redirected from hospital based care to home based care,
which drives the rise of cardiac telehealth system [3]. The
cardiac telehealth systems are able to provide a high-quality,
personalized, real-time and long-term ambulatory monitoring
service for chronic CVD patients, while overcome barriers of
time, cost, and distance. The cardiac telehealth system often
consists in outfitting patients with portable, miniaturized and
wireless sensors and devices that are capable to measure and
report cardiac signals to telehealth providers. Owing to the
fact that some chronic CVDs have low prevalence but high
risk, the new-generation cardiac telehealth system prefers to
transmit the ECG data to a remote server via wireless networks
to provide high-quality interaction and real-time intervention
for adverse cardiac events.

After the ECG data is collected, complex analysis will
be performed to extract useful information. In this domain,
clustering is a commonly applied approach to gain an overview
of data, detect outliers or pre-process before further analysis,
i.e., clustering could help clinicians to gain an overview of the
ECG data, and locate abnormal cardiac events quickly without
reviewing all the data manually. As an important research
topic, a proliferation of researches have been done in this area
[4]–[9]. However, all of these works are built on an assumption
that the ECG data is small enough to fit into the memory and
will not be updated, but this assumption do not hold in cardiac
telehealth systems.

As mentioned before, to provide high-quality interaction
and real-time intervention for adverse cardiac events, theECG
data will be transmitted to remote server continuously in real-
time, which makes the ECG clustering in remote server a
stream clustering problem. As an important research topic,
plenty of literature has been proposed: BIRCH [10], which
uses the Cluster Feature as a compact representation of cluster,
is regarded as one of the most primitive works in this area.
M. Esteret al. [11] address this problem by designing an in-
cremental clustering algorithm based on DBSCAN algorithm.
D. Phamet al. [12] combines the idea of ”cluster jumping”
with K-Means to cluster data incrementally. CluStream [13]is
a framework for clustering evolving data streams, which could
get a clustering result during a specific time. However, none
of these works have taken the speciality of the ECG data into
account, and thus could not be applied in the cardiac telehealth
scenario.

In addition, the large number of patients and the high data
update rate in cardiac telehealth system converge to the fact
that the data volume in the system will be extremely large,
therefore a framework is required to manage such massive
data. Although there are many candidates, the MapReduce
framework proposed by J. Deanet al. [14] has attracted great
attention from both academia and the industry in recent years
and its open-source implementation, namely Hadoop [15],
becomes the first choice for managing big data. Although
MapReduce has lots of excellent advantages, it is not easy
work to build a system based on the MapReduce framework. In
order to better utilize the power of MapReduce, the workflow
has to be designed carefully according to the MapReduce
programming model so as to distribute as much computation
work as possible.



In this work, we designed a parallel system for clustering
massive ECG stream data and implemented it on top of
MapReduce. Our system performs the clustering by adopting
an ECG-oriented metric and achieves the global optimum
by merging and splitting dynamically. The evaluation on a
Hadoop cluster with 32 computing cores shows that our system
would not only provide a good clustering result but also has
an excellent performance on multiple nodes.

The rest of this paper is organized as follows: In Section
II, we present an overview of our system and indicate the
challenges behind our work. In Section III, we introduce
the ECG-oriented metric used throughout the whole system.
In Section IV, we provide an in-depth discussion about the
stream clustering algorithm. In Section V, we describe how
to distribute our algorithm over Hadoop cluster. Section VI
reports the evaluation result and Section VII concludes the
paper.

II. SYSTEM OVERVIEW AND CHALLENGES

In our system, portable sensors are deployed to collect ECG
data from patients and the collected ECG data is reported to
a remote analysis server automatically and continuously. As a
result, the ECG data will arrive in the server as a stream, anda
stream clustering is then performed immediately to clusterthe
newly arrived data properly with respect to the existing data.
The clustering result can be provided to clinicians to help in
diagnosis or delivered to another system for further analysis.
To achieve this, several challenges need to be conquered.

ECG-oriented metric design:
The primary step of cluster analysis is to define the basic

processing unit. For ECG data, as it is actually a combination
of electrical deflection caused by the heart beat, it can be
divided into several intervals according to the heart beats,
each of which is called as QRS interval in this paper and
used as the basic processing unit for our cluster analysis.
Figure 1 presents a standard QRS interval. As showed in
Figure 1, the QRS interval actually consists of many waves
and segments and each wave has some characteristic points—
-the beginning point, the peak and the end point. The QRS
interval also owns some special properties: Firstly, considering
the nature of ECG, some regions of the QRS interval are
more important than others. Second, since each QRS interval
corresponds to a heart beat, the QRS intervals could be of
various lengths. Finally, as a result of the biological diversity,
the morphological characteristic of QRS intervals diversifies
with different people and even with same person in different
situations.

Considering these properties, we propose an ECG-oriented
metric, which defines how to measure the dissimilarity be-
tween two unequal-lengthed QRS intervals.

Stream clustering algorithm:
Different from the clustering of unchanged data, stream

clustering poses several additional requirements: First,the
data will arrive continuously, which implies that the algorithm
has to generate results in a very limited time. Besides, the
undergoing changes may cause existing clusters to emerge,
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Fig. 1. Standard ECG with labels.

merge and split, so the algorithm should be able to aware of
these changes.

In our work, we introduce a new stream clustering algorithm
for ECG stream data and empirically demonstrate its practical
performance. The key idea of our algorithm is that as the new
data arrives, it is clustered into several local clusters without
initially taking the existing data into account. The connectivity
and distortion of these new clusters and existing clusters will
then be evaluated globally. Those clusters which have high
connectivity would be merged into one, while the clusters
which have high distortion would be split into smaller clusters.
This approach iterates as new batch of data comes in.

Speeding up with MapReduce:
To conquer the challenge derived from scaling our system

over massive data, we choose to implement our system on top
of MapReduce. However, due to the inherent nature of our
workflow, not all the computation could be distributed, thus
deciding which part to distribute becomes a vital issue for
system performance.

To improve the performance as much as possible, we
carefully design our workflow according to the MapReduce
model in order to distribute most of the computation among the
cluster. For some parts of the workflow which are dependent
on the others, we break them into smaller granularity and
execute the independent parts in parallel and run the dependent
parts in sequence.

III. ECG-ORIENTED METRIC

The primary step of clustering is to define the basic pro-
cessing unit. In our system, since the QRS interval is used
as the basic unit, a conventional wavelet transformation based
algorithm [16] is first applied to find the characteristic points.
According to these characteristic points, the ECG data could
easily be interpreted as a set of QRS intervals. Since this
algorithm has been well-discussed in [16], we will put more
attention on the following steps.

The next step is to define the measurement of the dissimi-
larity between QRS intervals. The primary challenge deriving
from the special properties of QRS interval is that they are time



series data of unequal length. This makes some conventional
metrics like Euclidean metric inapplicable. To measure the
dissimilarity between QRS intervals properly, we first align
these QRS intervals by adopting the Dynamic Time Warping
(DTW) algorithm [17], which could make two unequal-length
QRS intervals align with the same length without losing the
morphological characteristic: Given two sequences of time
series dataM andN , with lengthm andn respectively, the
DTW algorithm would yield an optimal warping path between
the two data by using the dynamic programming approach. The
warping pathWP is a set of tuples which is defined below:

WP = {(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n} (1)

where each tuple(i, j) in the warping path means that theith

element in the dataM should be aligned with thejth element
in the dataN . So, with this warping path, these two time series
dataM andN could be aligned easily.

Another issue raised from the special properties of QRS
interval is that considering the nature of ECG, some regions
of the QRS interval are more important than others. Taking this
into account, we divide the QRS interval into three segments
and assign each segment with a heuristic weight, that is:







s1 = [Po, Qo], weight= w1

s2 = [Qo, J ], weight= w2

s3 = [J, Te], weight= w3

(2)

where thePo is the beginning point of P wave,Qo is the
beginning point of Q wave,J is the end point of S wave,
the Te is the end point of T wave, and thew1, w2 andw3 is
the heuristic weight of each segment respectively. All of these
points are showed in Figure 1.

Combining these two ideas together, we propose the our
approach to measure the dissimilarity between QRS intervals:
First, a standard QRS interval is synthesized, and all of the
QRS intervals, including the synthesized one, are divided
into three segments:s1, s2, s3 according to the equation (2).
Then, the DTW algorithm is applied between each QRS
interval and the standard QRS interval ons1, s2 and s3
respectively to find the warping paths. By aligning thes1,
s2 ands3 respectively, all the QRS intervals are aligned with
the standard QRS interval. After that, the dissimilarity between
two QRS intervals could be defined as the sum of the weighted
Euclidean distances between the aligned segments.

That is, given two QRS intervalsQ and R, which have
been aligned with the standard QRS interval, the dissimilarity
Dis(Q,R) between these two QRS intervals is defined as:

Dis(Q,R) =
∑

i=1,2,3

wi ∗ dis(siq, sir) (3)

where siq and sir are the aligned segmentsi in Q and
R respectively, and thedis(X,Y ) is the Euclidean distance
between equal-length dataX andY .

IV. STREAM CLUSTERING

The design preference of providing continuous monitoring
services in the cardiac telehealth system has made the data
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Fig. 2. Algorithm overview.

arrive as a stream. This requires the clustering algorithm not
only to be able to generate results in a limited time but also be
aware of the undergoing changes. Under these concerns, we
present our stream clustering algorithm, which could generate
results in an incremental manner by dynamically merging and
splitting clusters. Figure 2 gives an overview of this algorithm.
In our approach, as soon as a batch of new ECG stream data
arrives, an iteration which consists of four steps would be
triggered:

Step 1 is the characteristic points extraction. In this step,
a conventional wavelet transformation based algorithm [16]
is performed to find the characteristic points, and according
to these characteristic points, the ECG data could be easily
interpreted as a set of QRS intervals, which is the basic
processing unit for following steps.

The next step is the local clustering. In this step, the QRS
intervals will be divided into several groups randomly. Then,
for each group, a K-Means clustering algorithm is applied to
generatek clusters respectively, where thek is used to control
the granularity of local clustering. After the clustering,the
cluster feature of each cluster would be computed, the cluster
featureCF is actually a representation of cluster, which is
defined as below:

CF (C) = (c, e, r, lr) (4)

where thec is the centre of clusterC, e is the centre of the
Euclidean space,r and the lr is the average and maximal
distance between centrec and the QRS intervals in this cluster,
respectively.

In this step, some QRS intervals that should belong to
the same cluster, might be divided into different groups and
thus be clustered separately, which eventually leads to their
misplacement. To address this problem, the global merging
and splitting is performed after the local clustering.

Step 2 is the global merging. In this phase, we first define
the connectivitycon between two clustersQ andT as below:

con(Q, T ) =
(rq + rt)

Dis(cq, ct)
(5)

where therq andrt is the average radiusr of clusterQ and
clusterT , the cq andct is the centre of clusterQ andT , and
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Fig. 3. The overview of system.

Dis(cq, ct) is the dissimilarity measurement betweencq and
ct

All the connectivities between each pair of clusters gener-
ated from the local clustering and existing clusters generated
from the previous iterations will be calculated. After that,
all the clusters whose connectivities satisfy the following
condition would be merged into one cluster:

con(Q,R) ≥ λ (6)

whereλ is a pre-defined parameter to control the granularity
of global merging.

Although the global merging would address the misplace-
ment caused by local clustering, but it also might degrade
the cluster quality by merging heterogeneous clusters together.
So, after the global merging, a cluster evaluation would be
performed to evaluate the quality of each cluster. The quality
of cluster is represented by its distortion error, which is defined
as below:

DST (C) =
w1 ∗ r + w2 ∗Dis(c, e)

lr
(7)

whereDST (C) is the distortion error of clusterC, thew1 and
w2 are the heuristic weights,r is the average distance of cluster
C, c is the centre of clusterC, e is the centre of Euclidean
space, andDis(c, e) is the dissimilarity measurement between
c ande.

After the cluster evaluation, all the clusters which satisfy
the following splitting condition would be applied with a K-
Means algorithm to split into two smaller clusters:

DST (C) ≥ τ (8)

whereτ is a pre-defined parameter to control the granularity
of global splitting.

After the global splitting, the whole clustering iteration
ends. The final clustering result will be saved in the file system
for clustering next batch of data incrementally.

V. SPEEDUP WITHMAPREDUCE

As the data we are processing is stream data with high
update rate, which implies that the data volume in our system

would increase exponentially as time goes by, thus we im-
plement our system on top of the MapReduce framework in
order to handle such massive data properly. Figure 3 shows the
work flow of our system in the perspective of MapReduce. The
four steps of our stream clustering algorithm: characteristic
points extraction, local clustering, global merging and global
splitting, are implemented as five MapReduce jobs.

In the work flow of our algorithm, since the workload of
characteristic points extraction is relatively lightweight, it has
been combined with the local clustering and implemented as
a single MapReduce job. Besides, the characteristic points
extraction and local clustering only concern about the local
data stored in current machine, so the computation could be
easily performed independently in the MAP phase, and the
intermediate results are aggregated and pushed to HDFS for
further use in the REDUCE phase.

However, situation becomes more complex when it comes
to global merging. As shown in Figure 3, the global merging is
actually implemented as two MapReduce jobs: one for cluster
merging and another for cluster evaluation.

In the cluster merging, we will have to cross-check all the
clusters to calculate the connectivity and perform merging
operation on some clusters. In order to parallelize this step as
much as possible, we break it into two smaller steps: schedul-
ing and merging. The scheduling step computes the pair-wise
connectivities between clusters to schedule a merging planand
the latter step conducts the actual merging according to the
merging plan. Due to its serial nature, the scheduling step
will only be able to run in sequence, but the merging step only
involves the data containing in its assigned merging plan, and
thus could be performed in parallel.

After the cluster merging, the quality of each cluster has to
be evaluated in order to check whether this cluster needs to
be split. Although it only requires update the cluster feature
for newly-generated clusters, it could not be combined with
the previous MapReduce job. Recall that for a cluster feature,
we have to compute the centre and the average radius of
cluster. This requires to scan the whole data twice at least:
the first scan finds the center, the second scan calculates the



TABLE I
CLUSTERINGRESULT

ID Cluster size Total distance Average radius Maximal radius
C1 2753836 130889825.08 47.53 186.50
C2 1922412 107558951.40 55.95 202.10
C3 2003 55743.49 27.83 88.04
C4 11771 289684.31 24.61 110.13

average radius with respect to this centre. However, multiple
scan is forbidden in a single MapReduce job, thus we have to
perform an inevitable MapReduce job for cluster evaluation
after merging.

For the global splitting, like the local clustering, it onlyneed
local data stored in current machine. Therefore, this step could
be easily performed in single MapReduce job. However, the
quality of cluster need to be updated after splitting, thus an
inevitable cluster evaluation job would be performed afterthe
cluster splitting job.

VI. EVALUATION

To conduct the evaluation, we implemented our system
on Hadoop 0.20.2 and conduct a series of experiments on
a homogeneous Hadoop cluster, in which each node runs
a CentOS 5.5 and is equipped with an Intel Xeon CPU
@2.4 GHz with 4 cores, 4 GB of RAM and 160 GB of
hard disk. To get a convincing result, we cooperate with
New Element Medical Ltd.,Co, Shenzhen, China [18], which
provides us a real ECG database collected from hundreds of
patients, including patients of different age, gender and heart
status. In this database, there are more than 1,500 ECG data
files, each of which contains about 2,800 QRS intervals. So,
approximately, there are 4,356,800 QRS intervals in total.For
all the experiments, we set the parameters in our system as
below:

{w1 = 0.15, w2 = 0.5, w3 = 0.35 }

{k = 4, λ = 1.0, τ = 0.4 }
(9)

wherew1, w2, andw3 are the heuristic weights used in the
similarity measurement, andk, λ and τ are the parameter
which control the granularity of local clustering, global merg-
ing and global splitting respectively.

We first conduct a baseline performance evaluation, in
which we cluster an ECG stream data which consists of 1500
ECG data files and report the clustering result. Then, the scal-
ability characteristic of our system with respect to the number
of computing cores is evaluated. After that, we evaluate the
performance of our system with respect to different block size
of HDFS.

Baseline performance evaluation:
In this evaluation, we use our system to cluster an ECG

stream consisted of all the ECG data files from the real ECG
database. The whole data is clustered into 4 clusters and
some important statistics of each cluster are listed in table
I, where the cluster size is the number of QRS intervals in
the cluster, the total distance is the sum of distances between
the cluster centre and the QRS intervals in the cluster, the
average radius and maximal radius is the average and maximal

Fig. 4. One of the clustering results.

distance between the cluster centre and the QRS intervals in
this cluster, respectively. To provide an intuitive view ofthe
clustering results, Figure 4 plots all the clusters in the Table
I in an overlapped way. We could see that the quality ofC1,
C3 andC4 are good since the morphological characteristic of
each QRS interval in each cluster is well-matched, even some
of them have obvious drift on different segments. However,
intervals in C2 have introduced some noises, which seems
to degrade the cluster quality. After investigating the data
carefully, we find that this is caused by interference and human
factor, i.e. incorrect usage of cardiac sensors. Since we are
using a real ECG database, this kind of issues are inevitable.

Scalability with computing cores:
To evaluate the scalability of our system, we conduct an

experiments which processes a part of all ECG data files
in each iteration of clustering and run this experiment on a
cluster scale from 8 cores to 32 cores. Figure 5 shows the
average running time of our system with different number
of computing cores. It is obvious that the total running time
is decreasing significantly as the number of computing cores
grows. This shows that as the workload has been distributed
and can be done in parallel, thus the performance gains a
significant improvement when using more computing resource.

Besides, the average running time of each step in our stream
clustering algorithm is also evaluated. As showed in Figure6,
we notice that the global merging is the most time-consuming
job during the whole process. This is because the workload is
quite heavy since this step has to cross-check all the clusters
in a serial manner and would cause plenty of IO operations
when performing the cluster merging operation. We also find
that the global merging benefits significantly when increasing
the number of computing cores, which could be explained by
observing the fact that the most work in the global merging
is done in the reduce phase, and as the number of reducers
is depend on the number of computing cores, thus the more
computing cores we have, the more reducers would run in



Fig. 5. Scalability of PESC system.

Fig. 6. Scalability of steps in stream clustering algorithm.

parallel, which could speed up the global merging significantly.
Optimization with block size:
As mentioned at the beginning of this section, the database

we are using consists of thousands of ECG data files. However,
processing large volumes of small files in Hadoop could be
a quite frustrating work due to its design principle [15]. To
evaluate one of the most important issues—-block size of
HDFS, we conduct an evaluation with different block sizes
and report the result in Figure 7. Note that the performance
gains a significant improvement when the block size decreases
from 32MB to 1MB, but degrades when the block size
decreases to256KB. One of the most significant reasons is
that for each file in the HDFS, which is smaller than a block,
still occupies a block. This will result in a lot of useless IO
operation and networks overhead and thus eventually degrade
the performance significantly. However, due to the fact that
each Map task usually processes a block of input at a time, if
the block size are noticeable smaller than the input files size,
then there will be plenty of map tasks, each of which imposes
extra bookkeeping overhead, which would also degrades the
performance.

VII. C ONCLUSION

We have designed and implemented the PESC, a parallel
system for massive ECG stream clustering. Our system would
perform the clustering by adopting an ECG-oriented metric
and try to achieve the global optimum by merging and splitting
dynamically. The evaluation result shows that our system
would not only provide a good clustering result but also
produces an excellent performance on multiple nodes.

Fig. 7. PESC performance V.S. HDFS block size.
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