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Abstract

The ever-increasing mobile video services and users’ demand for better video

quality have boosted research into the video Quality-of-Experience. Recently,

the concept of Quality-of-Experience has evolved to Quality-of-Engagement, a

more actionable metric to evaluate users’ engagement to the video services and

directly relate to the service providers’ revenue model. Existing works on user

engagement mostly adopt uniform models to quantify the engagement level of

all users, overlooking the essential distinction of individual users. In this pa-

per, we first conduct a large-scale measurement study on a real-world data set

to demonstrate the dramatic discrepancy in user engagement, which implies

that a uniform model is not expressive enough to characterize the distinctive

engagement pattern of each user. To address this problem, we propose PE, a

personalized user engagement model for mobile videos, which, for the first time,

addresses the user diversity in the engagement modeling. Evaluation results on

a real-world data set show that our system significantly outperforms the uniform

engagement models, with a 19.14% performance gain.
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1. Introduction

The increasing prevalence of mobile devices has triggered an exponential

growth in mobile video services. It is estimated that, by the end of 2018, mobile

video will account for over two-thirds of the world’s mobile data traffic [? ]. In

the wake of the development of screen size and computation power of mobile5

devices, users have a higher demand on the viewing experience. To cater for

such needs, it is essential to accurately assess video quality.

The assessment of video quality has been widely studied by the multime-

dia community for a long time. Pioneer researchers have tried to quantify and

improve users’ viewing experience by optimizing quality-of-service (QoS) pa-10

rameters [1, 2, 3, 4]. Although such QoS parameters are objective and easy to

measure, their relationships to users’ viewing experience are hard to quantify.

To evaluate video viewing experience from the user’s perspective, the concept

of Quality-of-Experience has been proposed. A plethora of works try to solicit

users’ opinion evaluation score by conducting subjective tests [5, 6, 7, 8]. How-15

ever, such subjective tests inevitably involve lots of human participation, thus

are often in small scale due to the high cost.

In recent years, the concept of Quality-of-Experience has involved to Quality-

of-Engagement. The user engagement, compared with the subjective and hard-

to-measure user perceptual experience, is a more actionable metric to evaluate20

user’s satisfaction with the video service and directly related to the service

providers’ revenue model [9]. As various parties are involved in the video ser-

vice ecosystem, the user engagement can be evaluated from different angles.

As a pioneer, Dobrian et al. collected a large-scale data set via client-side in-

strumentation and investigated how the video quality parameters affect the user25

engagement from the content provider’s perspective [10]. The authors in [11, 12]

developed a decision-tree-based engagement model to quantify the relationship

between video-delivering QoS parameters and user engagement, which can help

the design of content providers. Also, the authors in [13] examined the causal

relationship between video quality and viewer behavior from the perspective30
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of content delivery network (CDN) owner, while another study utilized mas-

sive network-provider-side data to measure the impact of network dynamics on

users’ engagement in mobile video services [14]. Generally, these works leverage

the power of machine learning and big data to reveal the complicated relation-

ship between user engagement and confounding factors. Nevertheless, all of the35

existing models are built upon the entire user data set, averaging the effect

of confounding factors on all users. When applied to individual users, such a

uniform model may fail to characterize the distinctive patterns of personal user

engagement.

To investigate users’ differences in their engagement patterns, we collect a40

large-scale video streaming data set from the core network of a tier-1 cellular

network in China. We first study the impact of the downlink throughput, which

is an important factor from the perspective of network provider, on the user en-

gagement in mobile video services. The result indicates that the same factor

may have distinctive effects on different users. To further investigate the effect45

of user diversity on engagement modeling, we employ a wildly-used machine

learning algorithm, i.e., gradient boosted regression tree (GBRT) [15] to build

a uniform user engagement model with data of all users, and individual user

engagement models for selected users. Comparing individual models with the

uniform model, we find that the model parameters of a specific user are consid-50

erably different from those of other users, as well as the uniform model. This

implies that a uniform model is insufficient to comprehensively characterize the

engagement level of individual users.

To gain a more accurate and fine-grained insight into user engagement, we

need a personalized user engagement model which can comprehensively capture55

the user diversity. To achieve such a goal, there are several challenges: (1)

The data set consists of millions of users, and building personalized engagement

models for such a large user population is quite difficult. (2) The number of

videos watched by each user is rather small compared with the total number

of videos in the data set, insulting in a highly sparse viewing record, which60

makes it hard to build accurate models for each user. (3) While soliciting
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information from accessory data sources is a potential solution to the sparsity

problem, seamless integration of the information from various data sources is a

non-trivial problem.

To tackle the above challenges, in this paper, we propose PE, a personalized65

quality of user engagement model for mobile videos from the perspective of

mobile network provider, which takes user diversity into account and thus can

provide a more accurate and fine-grained modeling. PE collaboratively learns

the individual model for each user via matrix factorization and exploits the side

information from other data sources to alleviate the data sparsity problem. The70

evaluations on a real-world data set show that PE significantly outperforms

state-of-the-art user engagement models with a 19.14% performance gain.

With our system, mobile network providers can gain a more accurate un-

derstanding of user engagement with their services. Such knowledge can help

them better invest network resources and perform case-by-case optimization [9].75

Moreover, though our current implementation serves the need of mobile network

providers, PE can easily be extended to meet the requirement of other service

providers, e.g., video content provider and CDN owner.

Our key contributions lie in three aspects:

• Our experiment on a large-scale video streaming data set demonstrates80

a significant user diversity in user engagement, which implies that the

uniform model is insufficient for accurate engagement modeling.

• To the best of our knowledge, we are the first to propose a personalized

user engagement model for mobile videos from the perspective of mobile

network operators. This model can comprehensively capture the dramatic85

user diversity and provide a more accurate assessment of user engagement.

• We collect a massive video-related data set from a tier-1 network operator

in China and perform a thorough evaluation of our system. The exper-

iment results indicate our system can bring a 19.14% performance gain

with respect to state-of-the-art user engagement models.90
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The rest of this paper is organized as follows. Section 2 reviews the related

work and Section 4 defines the problem scope and validates the user diversity

on a real-world data set. Section 5 formulates the problem and introduces the

architecture of our system and Section 6 discusses the design of our personalized

user engagement model. The evaluation results are reported in Section 7. Sev-95

eral piratical issues and future exploration are discussed in Section 8, followed

by a conclusion in Section 9.

2. Related Work

Video quality assessment has long been studied in academia. Early works on

this area mainly focus on objective QoS metrics, e.g., video encoding rate [1, 16],100

bitrate [17, 18] or network bandwidth [19, 20], and try to improve user’s expe-

rience by better QoS provision. However, as the video service is highly user-

centric, the practical improvement brought by these works is hard to be vali-

dated [9]. To evaluate video quality from the user perspective, many researchers

have started to evaluate video quality-of-experience via subjective tests in a105

controlled environment [5, 6, 9]. The high cost and human participation in

subjective tests are inevitable for such works and thus limits the scale of their

experiments.

In recent years, the concept of Quality-of-Experience has evolved to the

Quality-of-Engagement. The data-driven user engagement analysis for video110

services has been boosted by the availability of massive data traces from service

providers and the fast development of big data processing techniques. Recent lit-

erature on data-driven user engagement analysis mainly focuses on understand-

ing the influence of different factors on user engagement. In these works, user

engagement is quantified from the different perspectives. For example, content115

providers can quantify user engagement via the viewing time ratio [10], while

network service provider may employ the video download ratio [14] as a metric.

These metrics also conform with the business models of subscription-based or

advertisement-based video services, which is very important from the perspec-

5



tive of service providers. In [10], the authors studied the impact of start-up120

delay, rebuffer time and encoding bitrate on user engagement. As an extension,

in [11, 12], the authors further investigated the impact of types of video, de-

vice, and connectivity on user engagement and proposed a decision tree-based

prediction model to characterize the complicated relationship between user en-

gagement and confounding factors. In [14], Shafiq and et al. studied how cellular125

network metrics affect the video download ratio, and predict the download ratio

with a regression tree model. In [21], Jiang et al. observe that the video quality

is mainly determined by a subset of critical features and propose a novel Critical

Feature Analysis (CFA) system to predict video QoE by examining the QoE of

similar sessions. However, these existing user engagement models only quan-130

tify the average engagement of all users, while user diversity in the engagement

pattern has been overlooked. As a remedy, our work propose to personalize

the user engagement modeling to capture the diversity of user behaviors. We

believe our personalize model can serve as a complement to these works.

3. Data Set135

To comprehensively study the engagement behavior at a large scale, we

collect a massive data set from a tier-1 cellular network provider in China [22],

which contains more than 8 million users and covers a large metropolitan area

in one of the biggest cities in China from August 1st, 2014 to September 2nd,

2014.140

This dataset contains information from two data sources. One data source

is the raw IP flow trace captured from the links between the serving GPRS

support nodes (SGSN) and the gateway GPRS support nodes (GGSN) in the

core network of a 3G cellular network. It contains the flow-level information of

all the IP traffic carried in the packet data protocol (PDP) context tunnels, that145

is, flows that are sent to and from mobile devices. This trace includes: start and

end timestamps, anonymized user identifiers, traffic volume in terms of bytes,

packet numbers for each flow, application information and location information.
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All user identifiers are anonymized to protect privacy without affecting our

analysis. The other data source is the information from the user profile database,150

which is managed by cellular network operators to better understand users’

needs. These information consists of user’s demographic information, e.g., age,

gender, address, and data usage behavior, such as current data plan and data

usage in the last month. To protect user privacy, all user-related identifiers are

strictly anonymized and robust to de-anonymization.155

4. Problem Definition

Existing user engagement models are built upon the entire user data set, av-

eraging the effect of factors on all users [9]. However, as users’ viewing behavior

diversifies, we expect the effects of these confounding factors to be disparate for

different users and such diversity would affect the modeling of user engagement.160

To validate this, two natural questions follow: (1) Is there diversity in user

engagement patterns? (2) If yes, how does such user diversity affect

the user engagement modeling?

In this section, we first define the engagement metric, then provide answers

to the above two questions with experiments on a real-world data set.165

4.1. Quantifying User Engagement

To quantify user engagement from the perspective of mobile network provider,

we collect a large-scale anonymized IP flow trace from a tier-1 cellular network

provider in China [22], which contains information of more than 8 million users

and covers a large metropolitan area in one of the biggest cities in China from170

August 1st, 2014 to September 2nd, 2014 (the city name is anonymized for pri-

vacy issues). Through filtering and combining raw IP flow traces and signaling

messages, we can obtain a fine-grained view of all mobile video sessions.

From the perspective of mobile network operators, fewer abandoned-video

sessions and more downloading traffic are desirable, since a higher data usage

results in a higher profit according to most revenue models of mobile network
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providers. Therefore, the download ratio is often used as a metric to measure

the user engagement from the perspective of network provider [14]:

Download ratio r =
downloaded bytes

video file size in bytes
. (1)

As our work is in part of a large on-going service optimization project for the

cellular operator, we closely cooperate with many front-line engineers to perform175

on-site monitoring and measurements. With a full support from the cellular op-

erator, the file size, downloaded bytes, and the corresponding bit rate changes

during the video session can be captured by employing an internal deep packet

inspection (DPI) system, which is deployed by the cellular operator at the IP

layer for the purpose of network QoS/QoE analysis and security monitoring.180

By inspecting the IP packet, examining the payload (e.g., the Media Presen-

tation Description (MPD) data in MPEG-DASH protocol [23]), and applying

a variety of protocol-specific rules and machine-learning-based algorithms on

both packet payload and network traffics, the DPI system can get the detailed

video session information from IP packet level measurement, even the traffics185

are encrypted [24, 25, 26].

Note that, considering various video service providers are contained in out

dataset, albeit their streaming techniques are different, the adaptive streaming

is commonly used. Therefore, the byte-range request and sudden video quality

adjustment are common practices in our dataset. To address this issue, the190

download ratio of the video is computed “adaptively” by monitoring the video

quality change. For example, at the beginning, the video is streaming at quality

level A, which corresponds to a video size of yA. If no video quality change

happens, the download ratio can be easily computed as r = x0

yA
, where x0 is the

downloaded bytes. Later, at time t1, the video quality changes to level B of195

size yB and the downloaded bytes at this moment is x1. Suppose that, at time

t2, the user abandons this video-streaming session. The total downloaded bytes

from t0 to t2 are x2. Therefore, the download ratio r = x1

yA
+ x2−x1

yB
.

In this paper, we employ the download ratio to quantify the user engage-

ment, as it can be accurately measured from the network provider side. We200
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Figure 1: The correlation between video download ratio and average downlink throughput

during the video session for 100 random users.

understand that the download ratio can only capture the downloading phase of

video streaming, but not users’ behaviors after video download, e.g., users may

not watch the whole downloaded video due to lack of interest. Nevertheless,

such events are out of the control of mobile network providers. Besides, other

user engagement metrics suffer a similar problem, e.g., video-played time can205

not reflect user engagement if the video is played in the background [11].

4.2. Validation of User Diversity

To rigorously validate the user diversity, several issues need to be considered.

The first one is the effect of user interest. As we can image, the user engagement

level deeply depends on whether the user is interested in the video content. To210

focus on the quantification of user engagement to network service, the effect of

user interest should be eliminated. Therefore, we need to filter out the video

sessions abandoned due to the interest mismatch, despite the lack of any quality

issues during the session. To this end, many existing works [12, 27, 28] point

out that the users tend to sample the video to check whether its content meets215
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his/her interest. This results in many of them abandoning the video session

early at the very beginning. In light of this idea, we drop out all the video

sessions which are abandoned before 10% of the whole video is downloaded. We

understand such filtering can not guarantee that the issue caused by the user

interest is fully addressed, but at least its effect can be obviously reduced. After220

this filtering, there are 2,074,965 video sessions left in our dataset.

Apart from this, we drop out the users whose video-viewing records are less

than 100 to ensure each user left in the dataset has sufficient records to provide

a statistically meaningful result. After these two filters, we randomly select 100

of them as target users.225

For each of these selected users, we examine the Pearson correlation coef-

ficient [29] between the download ratio and an important network quality fea-

ture, i.e., the downlink throughput. Here, the Pearson correlation coefficient is

a measure of the linear correlation between two variables. Its value is between

+1 and −1, where +1 is total positive linear correlation, 0 is no linear correla-230

tion, and −1 is total negative linear correlation. Given two series of variables

X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, the Pearson correlation coefficient

r is defined as:

r =

∑n
i=1(xi − X̄)(yi − Ȳ )

√

∑n
i=1(xi − X̄)2

√

∑n
i=1(yi − Ȳ )2

, (2)

where the X̄ and Ȳ is the mean value of X and Y, respectively.

The result are presented in the Figure 1. We can see that the correlations235

between download ratio and downlink throughput change dramatically, span-

ning from -0.15 to 0.9. This variation indicates that the impact of downlink

throughput on user engagement is quite diversified.

To further examine the second question of how such user diversity affects the

engagement modeling, we build two kinds of models: one is the uniform model240

which is built upon the entire data set and averages the effect of confounding

factors on all users. The other is the individual model which only uses the

data records of a specific user ui as the training set and can be regarded as
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Figure 2: Feature importance of individual models and uniform model.

a precise engagement modeling for ui. By comparing the uniform model with

these individual models, we can examine how the uniform model deviates from245

these users.

In light of this idea, we adopt a mature machine learning algorithm—Gradient-

Boosting Regression Trees (GBRT) [15]—to model the relationship between the

user engagement and video-streaming-related features. We first build a uniform

model by inputting all the users’ data into GBRT. Then, we randomly select250

10 users and train a separate individual model for each user. To ensure the re-

sult is statistical reliable, each individual model should be built on a user with

sufficient data records. To this end, these 10 users are randomly selected from

the top 10% users who have watched the most number of videos in our dataset.

The average number of watched videos is 324.4 for these 10 users.255

The comparison of the individual models and the uniform model is reported

in Figure 2. Two interesting observations can be made: First, although the

distributions of feature importances are somewhat similar, some feature impor-

tances can be obviously different. For example, in the 8-th individual model,
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the feature importance of download delay is smaller than 0.2, but this feature260

is weighted more than 0.5 in the 4-th individual model. This corresponds to

our findings in the previous experiment on downlink throughput. Another ob-

servation is that the uniform model does not fit individual models well. The

relative feature importances of the uniform model actually diverge from indi-

vidual models, which implies that the uniform model only captures the average265

viewing patterns of users, but overlooks the diversity among individual users.

5. Design Overview

In this section, we first outline the architecture of our system, then introduce

our formulation of personalized user engagement model.

5.1. System Architecture270

In this work, we leverage a collaborative approach to build a personalized

user engagement model, which is de facto a set of collaborative individual mod-

els. By collaboratively learning individual models for each user, this approach

would make a better use of individual historical data and discover the latent

connections hidden in users’ viewing traces. To alleviate the data sparsity prob-275

lem, we utilize the collective matrix factorization [30] to learn side information

from the user feature matrix and the video feature matrix.

As shown in figure 3, our system comprises six major components:

(1) Data input. Our system mainly exploits two major data sets. One

is the user profile database, which is operated by the network operator and280

includes rich user-side information. The other one is the IP flow traces collected

from the core network of a 3G cellular network. It contains all the traffic traces

at the IP layer, which can be used to extract video downloading records and the

network quality during each video session. More information about this data

set is presented in section 3.285

(2) Raw data processing. The process of raw data is dataset-dependent

and involves many engineering works. In general, it contains the following steps:
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Figure 3: System overview of PE.

first, as the raw IP flow traces includes the traffic of various types of contents, we

identify the video-streaming-related flows by the source IP/port, content-type

header, as well as protocol type and traffic pattern. Then, these video-streaming290

flows are aggregated into sessions by combining the signaling messages and

src/dest address pair. For each video session, the corresponding network quality

statistics in this session can be computed from its IP-layer traffics. After that, we

associated each video-streaming session with the corresponding user profile by

using the anonymized International mobile Subscriber Identity (IMSI) number.295

(3) User feature extraction. In order to provide better services, network

operators have collected rich user information, including personal profiles (e.g.,

age, gender) and usage behaviors (e.g., current data plan, bills, and historical

data usage). To protect user privacy, all user-related identifiers are strictly

anonymized.300

The user information can be very helpful for building a personalized model,

13



but there is an abundance of user features, and we need to filter out “minor”

features, which contain less information about users’ preferences, to prevent

the curse of dimensionality. This feature selection can be done via information

gain analysis, which is a standard approach to uncover relationships between305

variables [31]. In the feature selection, we use the download ratio as the target

variable. Since it is a continuous variable, we first discretize it into 10 bins with

0.1 granularity. Then, we employ the information gain to select features. The

underlying idea of information gain analysis is the entropy, which represents the

informative level of a feature. The entropy of a random variable Y is defined310

as I(Y ) = −
∑

i P (Y = yi)logP (Y = yi), in which P (Y = yi) is the probability

of Y = yi, and the conditional entropy of Y given another random variable X ,

i.e., I(Y |X), can be computed as
∑

j P (X = xj)I(Y |X = xj). The information

gain then can be defined as G = I(Y )−I(Y |X)
I(Y ) . To filter out unnecessary features,

we can compute the information gain of each feature and select top features315

in terms of information gain. As a result, many less-important features, e.g.,

IP address/port of video content provider, TCP reconnection times, and last

network error, are filtered out and the selected features are shown in Table 1.

Through the feature selection, we select 19 out of 70 user features. These

user features can be further categorized into two groups: (I) demographic in-320

formation, which characterizes user population, e.g., age, gender. (II) usage

behavior, including current data plan, data traffic generated in last month, and

so on. Table 1 gives some examples of user features.

Domain Feature Description

User

Features

age Age of user

gender Gender of user

area Active area of user

addr id Living area index

credit value User’s credit value in the operator’s

credit system

page rank User importance in pagerank
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product id User’s current data plan ID

product kind User’s data plan specification

product price Price of user’s current data plan

sale id Product selling area ID

total charge Total cost in a month

flux last month Data traffic generated in last month

flux current month Data traffic generated in current month

streaming time Total access time of the streaming ser-

vice

voice cnt Count of voice call

voice dura Duration of voice call

innet dura Duration of using the network service

balance Account balance

total recharge Total recharge values

Video

features

TIME Start/end time of video session

CELL COUNT Cells the user roamed during the session

STREAMING URL The video’s URL address

STREAMING FILESIZE File size of the video in bytes

CDN IP address of the CDN

STREAMING SERVER Video service provider

PROT TYPE Streaming protocol name

DEVICE TYPE End-device Type

APN User’s access point name

L4 UL THROUGHPUT Uplink throughput

L4 DW THROUGHPUT Downlink throughput

TCP RTT Round-trip time in seconds

GET STREAMING DELAY Video service response delay

TCP DW RETRANS TCP-level retransmission count

Table 1: The user-side & video-side features
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(4) Video feature extraction. A major purpose of studying user en-

gagement from the perspective of a network operator is to understand how it is325

affected by the network quality variation. Thus, apart from primitive attributes

of videos (e.g., file size, CDN server host), we also exploit the network qual-

ity statistics during a video session as video-session-associated features of this

video. We select 14 important network quality statistics via information gain

analysis, and generally categorize them into three groups, i.e., video attributes,330

session-associated features and context. Table 1 illustrates these video features.

The main concern of using the network quality as video feature is that a video

can be streamed under various network qualities and results in multiple video-

quality tuples in our data set, each of which corresponds to a specific network

quality combinations. This will result in an explosive size of the video feature335

matrix. To reduce the computation complexity, we leverage agglomerative clus-

tering [32] to aggregate video-feature tuples that have the same URL and are

streamed in a similar network quality condition into clusters. The number of

clusters is a trade-off between the computation complexity and the granularity

of network quality. After that, we merge videos that belong to the same cluster340

together and define the video template as the mean of all video-feature tuples

in this cluster. Then, we represent the feature value of the video templates in a

matrix format and incorporate it into our model.

(5) User-video engagement extraction. In our system, we quantify user

engagement from the perspective of network operator via a continuous variable,345

the download ratio, which ranges from 0 to one to represent the fraction of video

downloading. The data is transformed in a user-video matrix R, in which rij is

the download ratio of the video j by user i.

(6) Personalized user engagement model. To address the user diver-

sity, we choose to quantify the user engagement with a collaborative filtering350

model. Also, to alleviate the data sparsity problem, we employ a collective

matrix factorization to integrate user- and video-feature data set. An in-depth

discussion is given in section 6.
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5.2. Data Formulation

By extracting and aggregating these raw data traces, we can obtain rich355

information about each video session, including the network statistics during

the video streaming, the viewer personal information, and their past behavior

patterns. We can formulate the processed data as follows:

• m users, each of whom has l features. Let Dm×l denote the user feature

matrix.360

• n videos, each of which is associated with h video features. Let Sn×h

denote the video feature matrix.

• Rm×n is the user-video matrix, in which rij is user i’s download ratio for

video j. Rm×n is a highly sparse matrix (sparse rate ≈ 99% ). Since there

are billions of videos and each user has only watched a tiny fraction of365

them, many items of rij are unknown.

In this context, modeling the user engagement is equivalent to building a

model which can accurately predict the missing values in the user-video matrix

R, based on the user feature matrix D and the video feature matrix S. Con-

sidering the significant user diversity in the user-video matrix R, this can be a370

challenging problem.

5.3. Limitations

We acknowledge that there are two potential limitations in our current for-

mulation and implementation:

• Download ratio as user engagement. Although the download ratio is375

directly related to the revenue model of mobile network provider, it con-

strains our analysis within the downloading phase. Some user behaviors

after downloading, unobservable from the network side, can not be cap-

tured. However, as the download ratio can be accurately and objectively

measured from network side and other analysis also employ the same met-380

ric [14], we use it as a start point for our analysis and our system can be

easily applied to other metrics of engagement.

17



• Data coverage over confounding factors. As our data set is col-

lected from the network provider, several confounding factors that affect

engagement are not captured in our dataset (e.g., video content and its385

popularity). As a result, our current implementation of PE only provides

a baseline performance and other data sources can be further integrated

to provide a more comprehensive and accurate engagement assessment.

6. Personalized User Engagement Model

After data modeling, we have the user feature matrixD, video feature matrix390

S and user-video matrix R. Our goal is to build a personalized model to predict

the missing values in R, with the help of D and S.

To build a personalized engagement model, one intuitive solution is to build

an individual model for each user separately. However, this is impractical as

there are millions of users. Another possible alternative is to first cluster users395

into groups, then build an independent model for each user group. This sounds

like a reasonable solution, but it is based on a strong assumption that users with

similar user features would behave analogously. This assumption poses a high

requirement for the quality of user features. If the user feature does not fully

capture the similarity of users on their engagement level, the clustering quality400

will be poor and eventually degrade the model’s performance. Apart from that,

this approach also understates the behavior patterns hidden in the historical

data. For example, user i and user j are quite similar according to their user

features, but indeed they behave in quite different ways (this may happen when

the similarity of user features does not perfectly reflect user behaviors). In this405

case, even if there are adequate historical data records for both users, they will

still be clustered into the same user group and thus share a comprised model

which does not fit either of them.

To conquer the user diversity and data sparsity, we establish a model based

on the collective matrix factorization framework [30]. The basic idea is that, we410

can first model each matrix via a low-rank approximation:
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Figure 4: Overview of personalized user engagement model.

D = U · P T (3)

S = V ·QT (4)

R = U · V T + µJmn +Bu · JT
n + Jm ·BT

v
︸ ︷︷ ︸

Buv

, (5)

where U , V , P and Q are latent factors, Buv is the baseline predictor, µ is the

average download ratio of all users, Bu, Bv are user bias and video bias matrices,

and J∗ are matrices of all the ones in different dimensions as suggested by their415

subscripts.

In this model, the user-video matrix R is approximated by the summation of

baseline predictor Buv and the product of latent factors U and V . The baseline

predictor Buv captures the basic engagement pattern and the bias introduced

by each user and video, with which we can alleviate the cold-start problem [33].420

In other words, given a previously unseen user ui, as the corresponding video-

viewing records are unavailable, his/her download ratio rij of a video vj is

dominated by the average download ratio of all users µ, as well as the download
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ratios of this video by other similar users, which are captured by the vector BT
vj
.

A similar approach can be applied for newly added videos. Furthermore, the425

lower-rank approximation part, U · V T , characterizes the fluctuation caused by

the user and video diversity.

The rationale is that, by transforming both user and video to the same

latent factor space, we can estimate users’ interest in these latent factors (i.e.,

U ) and the video’s extent of these factors (i.e., V ). Each user i and each video430

j correspond to a preference vector ~ui and score vector ~vj , and the learning

procedure is conducted in a collaborative approach. We iteratively use all the

video data of user i to help the training of user i’s preference vector, and feed

all data of users who watched video j into the model to learn the video score

vector vj .435

This collaborative approach may still suffer from data sparsity problem as

only users or videos which have common interactions (i.e., users who have

watched the same video, or videos that are watched by the same user) would

collaborate. To further alleviate data sparsity, we also simultaneously factorize

user feature matrix D and video feature matrix S and intentionally let latent440

factor U and V be shared among these factorizations. As a result, information

from D and S can be propagated to R, and thus help gain a better performance.

Figure 4 provides an intuitive overview of our model.

According to this model, we can formulate our objective function as:

L(Bu, Bv , U, V, P,Q) =

‖ I1 ◦ (R− U · V T − µJmn −Bu · JT
n − Jm · BT

v ) ‖
2

F

+
α1

2
‖ I2 ◦ (D − U · P T ) ‖2F +

α2

2
‖ I3 ◦ (S − V ·QT ) ‖2F

+
λ1

2
(‖ U ‖2F + ‖ V ‖2F )

+
λ2

2
‖ P ‖2F +

λ3

2
‖ Q ‖2F

+
λ4

2
‖ Bu ‖2F +

λ5

2
‖ Bv ‖2F , (6)

445
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where α1 and α2 are the reconstruction weights which control the degree of

reconstruction and information sharing. The larger α is, the more important

the corresponding term is in loss function and propagates more information to

the others. λi, i = 1, 2, ..., 5 are the regularization parameters, and Ii, i = 1, 2, 3

are the indicator matrices where Iij = 0 if the corresponding value is missing.450

Let the operator ◦ denote the element-wise product of two matrices and ‖ · ‖F

be the Frobenius norm. Note that we do not restrict the download ratio to

be a non-negative value between 0 and 1. Such restriction, albeit reasonable,

renders the problem a non-negative matrix factorization (NMF) problem. Due

to the consideration of the modeling complexity and solving time, we relax this455

restriction.

In general, this objective function is not jointly convex, and we cannot get

a close-form solution for minimization of this objective function. Therefore, we

turn to search for a practical local optimal solution by gradient descent. More

specifically, the gradients of loss function are:






∇BuL = Er · (−Jn) + λ4Bu

∇BvL = ET
r · (−Jm) + λ5Bv

∇UL = Er · (−V ) + α1ED · (−P ) + λ1U

∇V L = ET
r · (−U) + α2ES · (−Q) + λ1V

∇PL = α1E
T
d · (−U) + λ2P

∇QL = α2E
T
s · (−V ) + λ3Q

(7)

where Er , Ed and Es are the residual errors with respect to R, D and S.

Er = I1 ◦ (R− U · V T − µJmn −Bu · JT
n − Jm ·BT

v ), (8)

Ed = I2 ◦ (D − U · P T ), (9)

Es = I3 ◦ (S − V ·QT ). (10)

With the gradients, we can resort to the gradient descent approach to itera-

tively minimize the objective function. The detail is described in Algorithm 1.460

Although gradient descent can be quite straightforward, more efficient ap-

proaches, e.g., the stochastic approximation approach or a parallel version of
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Algorithm 1 PE Solver

Require:

Maximum iteration number S, convergence threshold ǫ;

User feature matrix D, video feature matrix S;

Sparse user-video matrix R.

Parameters set P = {p∗|p∗ = {µ,Bu, Bv, U, V, P,Q}}

Ensure:

Completed user-video matrix R̂.

1: s← 1;

2: while s ≤ S and L(s) − L(s+1) > ǫ do

3: γ ← 1;

4: Compute current residual error by Eq. 8;

5: Compute the gradients ∇∗Lby Eq. 7;

6: while L(p∗ − γ∇p∗
L) ≥ L(p∗) do

7: γ = γ
2 ;

8: end while

9: B
(s+1)
u = B

(s)
u − γ∇

(t)
Bu

, B
(s+1)
v = B

(s)
v − γ∇

(t)
Bv

10: U (s+1) = U (s) − γ∇
(t)
U , V (s+1) = V (s) − γ∇

(t)
V

11: P (s+1) = P (s) − γ∇
(t)
P , Q(s+1) = Q(s) − γ∇

(t)
Q

12: s = s+ 1

13: end while

14: Predict with: R̂ = U · V T
s + µJmn +Bu · J

T
n + Jm · B

T
v

15: return R̂
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the gradient descent [34, 35, 36] can be adopted to improve training efficiency.

We will not discuss these algorithms in detail, as it is out of the scope of this

paper.465

7. Evaluation

In this section, we evaluate our system using a real-world dataset. We

start by comparing the model performance with three state-of-the-art base-

lines. Then, we investigate our system by studying how the different parameter

settings affect our system’s performance.470

To conduct the experiments, we have implemented our model in Python 2.7

and ran it on an enterprise server machine with 24 Intel Xeon E5-2420@1.90GHz

CPUs, 120 GB memory, and 100 TB hard disk.

7.1. Model Performance

To evaluate the effectiveness of personalized models, we employ three widely-475

used and high-performance machine learning models as baselines:

• the Decision-Tree Regressor is a predictive model widely-adopted in

statistics, data mining, and machine leanring. Many existing data-driven

user engagement/QoE analysis employ this model due to its simplicity

and explainability [10, 11, 12].480

• The Random forest is a mature and high-accuracy ensemble learning

models, which is proved to be robust for the overfitting problem [37].

• To compare with previous work based on regress tree [14], we also em-

ploy a regression-tree-based model in our comparison, i.e., the Gradient-

Boosting Regression Tree (GBRT), which is an ensemble learning485

model based on regression tree. It incorporates the gradient descent and

boosting techniques to achieve a better performance [15]. It builds a sin-

gle strong learner by combining multiple weak ”learners” in an iterative

fashion: at the m-th stage of gradient boosting, an imperfect model Fm
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can be improved by constructing a new model Fm+1 = Fm(x) + h(x),490

which corrects its error residual h(x) = y − Fm(x). By fitting the h to

the residual y − Fm(x), each Fm+1 learns to corrects its predecessor Fm.

More details of this algorithm is added in the revision.

For these baseline models, we transform all the user-side and video-side

features listed in Table 1 into flat-table format and use the download ratio as495

the variable to predict. Also, the best parameters for each model is determined

via a 10-fold cross validation. That is, the dataset is randomly partitioned into

10 equal-sized subsets. Of these 10 subsets, a single subset is used for testing

the model, while the remaining 9 subsets are used as training data. The cross-

validation process is then repeated for 10 times, with each subset used exactly500

once as the testing data. After that, the test errors of these 10-fold testing

results are averaged to produced a single error estimation. In our evaluation,

the test error of each model is evaluated in terms ofMean Absolute Error (MAE)

and Root-Mean-Square Error (RMSE). Given n tuples, let ri and r̂i be the real

value and predicted value for the i-th tuple, the MAE and RMSE are defined505

as follows:

MAE =
1

n

n∑

i=1

|ri − r̂i|, (11)

RMSE =

√
√
√
√

1

n

n∑

i=1

(ri − r̂i)2. (12)

Although both MAE and RMSE are metrics for measuring error rate, there

are some subtle differences between them. As their names imply, the MAE is a

linear metric which means that all the individual errors are weighted equally in

the average, while the RMSE gives a relatively high weight to large errors and510

thus it is more useful when large deviations are particularly undesirable. The

MAE and RMSE are used together to measure the variance in the individual

errors in the prediction. The greater the difference between them, the larger

the variance is [31].
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Figure 5: Model performance comparison.
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Figure 5 shows the comparison of prediction performance of PE and base-515

lines. We observe that, as the gradient boosted regression trees and random

forest leverage the ensemble power of a set of weak learners to build a better

model, they slightly outperform the basic decision tree model. However, as these

baseline models treat all users as a uniform group, they neglect the diversity of

user behavior. On the contrary, our model learns the individual model for each520

user with the help of information from user-video interactions, and rich side

information from other data sources. When compared with the best of baseline

models (i.e., gradient boosted regression trees), the performance improvement

is 19.14% and 12.20% in terms of MAE and RMSE, respectively.

In the following subsections, we will study the performance of our system525

under different parameter settings.

7.2. Impact of Reconstruction Weights

The reconstruction weights, α1 and α2, control the importance of corre-

sponding matrix approximation in the loss function and the degree of informa-

tion propagation. For example, a large α1 not only implies that more emphasis530

is placed on the approximation of user feature matrix D in loss function but

also suggests that more information should be learned from D.

To study the impact of these reconstruction weights, we vary the value of one

reconstruction weight each time and plot the dynamics of the model performance

in terms of the average MAE/RMSE and the standard deviation obtained from535

the 10-fold cross-validation.

Figure 6 demonstrates how the system performance changes as we vary the

value of α1 while fixing α2 = 0.01. We notice that as the value of α1 increases,

the error rate first decreases and then starts to rise. The reason is that, when α1

is small, our model cannot fully exploit the user-side information to understand540

the similarity between users and therefore degrades the performance. However,

if the value of α1 is too large, the contribution of the user feature matrix D

would dominate in the loss function. This would restrain the approximation of

the user-video matrix, which will eventually downgrade the model performance.
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The best value of α1 in our experiment is 0.05.545

A similar pattern can also be observed in the analysis of α2. As shown in

Figure 7, the error rate starts to decrease as we enlarge the value of α2, and

more information is propagated from the video feature matrix S. However, if

α2 keeps growing, more errors would be introduced as the approximation of

the video feature matrix S dominates in the loss function and thus reduces the550

importance of filling the missing value in R. The optimal value of α2 in our

experiment is 0.01.

7.3. Impact of Video Clustering Granularity

As we aim to understand the impact of network statistics on user engagement

in mobile video services, we utilize the network quality statistics during a video555

session as features of this video. However, the fluctuation in network quality

may lead to a dramatic data explosion and therefore introduce a negative effect

on the overall performance. To alleviate this problem, we aggregate video-

feature tuples into video templates via agglomerative clustering. The extent of

this aggregation is controlled by a clustering granularity c. To understand the560

impact of video clustering granularity on our system, we validate our system

under different cluster granularity settings and present the results in Figure 8.

A small clustering granularity c aggregates more video-feature tuples into

a single video template. This can significantly reduce the data size, but also

introduce large deviations inside a video template. As a consequence, there565

will be large prediction errors for video-feature tuples which are far away from

the video templates. On the other hand, if the value of c is too large, the

video-feature tuples are barely aggregated, which again exposes the problem of

network quality variations. According to Figure 8, we set c = 0.5 for our data

set.570

7.4. Impact of Dimensionality of Latent Factor Space

As our model factories each user and video into two vectors in a latent factor

space of dimensionality f , a small f can significantly compress information into
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a compact latent space, which can help conquer the data sparsity problem.

However, such information compression may also suffer from information loss575

and thus cannot achieve the optimal performance. On the other hand, a large

f can help better capture the underlying pattern in the data, but bring about

a more serious data sparsity problem, which would introduce many errors for

users with a small number of watching records.

We plot the average and standard deviation of our system under different580

values of f in Figure 9. We can observe that the error rate first decreases when

the value of f increases and achieves an optimum when f = 13. If we continue

to enlarge the value of f , the data sparsity problem will lead to performance

fluctuation.

8. Discussion585

Our system is a first step toward the personalized user engagement modeling

for mobile videos. While the evaluation results demonstrate that it is promising,

there are still some limitations and open problems as below.

28



The Open of database. The dataset we used is a highly-sensitive prop-

erty of the cellular network operator, which consists of massive IP flow traces590

captured from the core network of a city-level cellular network. Since much sen-

sitive information about the network infrastructure can learn from such dataset,

many network operators concern that publishing such dataset may pose poten-

tial security threats to their network service. Furthermore, this dataset also

contains abundant personal information of millions of users, albeit they are595

well-anonymized, the user privacy is still a key concern which hinders the open

of this dataset.

System Reliability. Although our evaluation shows a promising result

with a 19.14% performance gain, some may concern whether such personalized

user engagement can be adopted in the cellular system as it presents higher600

complexity than uniform models. In our vision, personalization is a trend.

First, to provide better service, it is an inevitable that more and more user-side

information will be collected by the cellular operator. This provides a great

opportunity for the cellular operator to personalize their network service. Also,

unlike other wireless communication systems, the cellular network allocates a605

dedicated channel to each user, which also enables the potential possibility for

the per-user optimization of resource allocation. Most importantly, the immense

user base of cellular network operator implies that a small optimization in user

engagement can affect millions of users and may lead to whopping changes in

monetization opportunities. Existing user engagement assessment systems em-610

ploy the uniform models to quantify the user engagement at a coarse level and

can only archive a moderate performance as the essential distinction of indi-

vidual users is overlooked. As a remedy, we propose a personalized model to

quantifies the user engagement at a fine-grained level ( as a continuous value

from 0 to 1). We understand our current implementation of personalized user615

engagement model still needs further improvement, but our evaluation demon-

strates that the personalized model has a great potential to bring significant

improvement for the large-scale user engagement assessment.

Possible Improvements. To further improve the system performance,
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several directions are worth exploring. First, we believe incorporating features620

from different control panel can help our system performs better. For example,

user’s preference can help us better characterize the user viewing behavior, and

the operation log (video skip/stop) from end device enables us to understand

user’s engagement level during the video viewing. Meanwhile, some researchers

point out that only a small set of the critical features are determining the video-625

streaming quality [21]. In light of this idea, a more reliable feature selection

process can be performed to enhance data quality. We leave these improvements

for further exploration.

Yet another possible improvement direction is the online algorithm. For

now, our model works in a batch-processing way. That is, we need to retrain630

the model periodically, e.g., every month. This is indeed not efficient in both

terms of complexity and time. One promising solution is to leverage the online

streaming algorithms to update the model “continuously”. There are many

existing works on this topic [38, 39]. In the future, we plan to incorporate these

updating algorithms to our system.635

9. Conclusion

Accurate and reliable user engagement assessment is the key to optimize the

video service quality. Our experiments on real-world data set reveal a significant

diversity in user engagement and a uniform user engagement model is not suffi-

cient to characterize the distinctive engagement patterns of different users. To640

deal with this problem, we propose PE, a personalized user engagement model

for mobile videos from the perspective of cellular network providers, in which

the user diversity is well addressed. The evaluation results on a real-world data

set show that our personalized user engagement model outperforms uniform

models with a 19.14% performance gain.645
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