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Abstract
Forming secure pairing between wearable devices has be-

come an important problem in many scenarios, such as mo-
bile payment, private data transmission. This paper presents
EMG-KEY, a system that can securely pair wearable devices
by leveraging the electrical activity caused by human muscle
contraction, that is, Electromyogram (EMG), to generate the
secret key. Such a key can then be used by devices to au-
thenticate each other’s physical proximity and communicate
confidentially. Extensive evaluation on 10 volunteers under
different scenarios demonstrates that our system can achieve
a competitive bit generation rate of 5.51 bit/s while main-
taining a success matching rate of 88.84%. Also, the eval-
uation results with the presence of adversaries demonstrate
our system is secure to strong attackers who can eavesdrop
proximate wireless communication, capture and imitate the
users’ paring process with the help of camera.

1 Introduction
Nowadays we are witnessing the fast development of

wearable devices. Such rapid growth leads to a prevalence of
direct communications between devices in proximity and in-
novated many promising applications, such as: mobile pay-
ment, which enables users to make a purchase by interacting
their mobile devices or smart watches with an electronic pay-
ment device [1]; Private data transfer implemented on many
smart wristbands, e.g., fitbit [5], can directly transmit user’s
biological data to authenticated mobile device or data collec-
tion hub in proximity. Along with the wide adoption of these
applications are not only the convenience and fantastic use
experience, but also an increasing concern about privacy and
security, as the data transmitted is often highly sensitive and
private. As a result, establishing a secure pairing becomes an
important problem for wearable devices.

As wearable devices are often lack of convenient input
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Figure 1. Example application of EMG-KEY on Mobile
Payment.

method and have limited resources, researchers have pro-
posed many novel systems to serve as alternatives of tradi-
tional PIN-code-based and cryptographic-based approaches.
In these works, the vital part of creating a secure paring
between devices is to ensure both devices obtain consis-
tent and secret observations from an information source,
which make them reach an agreement on same secret key.
Such secret source can be the wireless channel measure-
ment [14,26,31,35,42], human movements like gesture [11],
or shaking trajectory [36], or ambient environment, e.g., ra-
tio [34], sound [45], or vibration [9]. However, since the
characteristics and randomness of the secret source directly
determine the robustness of secure pairing schemes, existing
works still expose some disadvantages when facing strong
attackers. Due the sharing nature of wireless medium, se-
cure pairing schemes based on wireless channel measure-
ment [14, 26, 31, 35, 42] are vulnerable to predictable chan-
nel attack, in which malicious adversary can use different
methods, e.g., block the Line-of-Sight (LOS) radio propa-
gation between devices, to cause predictable variations in
the wireless channel measurement. The secret key gener-
ated by movement-based approaches [11,36] can be inferred
if the movement is captured by a camera and the ambient-
environment-based works [9, 45] are threated by the eaves-
dropper and active attacker who can intentionally controls
the ambient environment by making predefined noises or vi-
brations.

The security limitations of the aforementioned techniques
motivate us to design a more secure pairing system using the
intrinsic signals residing inside human body, i.e., the elec-
tric activity caused by human muscle contraction. The key
insight is that, to perform human body movement, our cen-
tral nerve system will send electrical signals to cause corre-



sponding muscle contraction. Such electrical signal propa-
gates along with muscle fibers and can be captured by elec-
trodes placed on the skin. The recorded signal is termed as
Electromyogram (EMG), which has several promising char-
acteristics. (i) Medical studies [22, 37] have proved that the
EMG signal is a quasi-random process. This means the value
of EMG will be statistically larger if we intent to generate
stronger force, but the amplitude variation of EMG under a
given force value is stochastic in nature. As a result, even
if the gesture is imitated and the corresponding output force
is estimated, the variation of EMG amplitude is still unable
to be determined. (ii) The current volume and propagation
area of EMG are quite subtle, only physical contact in prox-
imity can sense the signal [22], which means the eavesdrop-
ping without contacting would be extremely hard, if not im-
possible. (iii) Fueled by the development of new human-
machine interaction technologies, EMG sensor is increas-
ingly adopted by many commercial wearable devices, e.g.,
Myo armband [7], Athos gear [3], and Leo smart band [6].
These facts suggest that EMG signal can be leveraged as a se-
cure source to generate secret key. Such key can be used by
wearable devices to authenticate each other’s physical prox-
imity and then to communicate confidentially.

Inspired by this idea, we propose EMG-KEY, a system
that securely pairs two wearable devices by using the EMG
variation caused by human body movement, e.g., hand ges-
ture, as the secret source to generate cryptographic key. Our
system consists of a smart wristband and a smart device
equipped with EMG sensors. By physically contacting these
devices to human body and perform an arbitrary gesture,
EMG-KEY can generate secret keys from the captured EMG
signals and use them to create a secure communication chan-
nel between devices. A typical application of EMG-KEY is
the mobile payment, in which the transaction data is very
sensitive and requires high security level. As shown in Fig-
ure 1, a user touches the payment device with his arm wear-
ing the smart wristband, then he can make an arbitrary ges-
ture, e.g., clench the fist. The EMG signal caused by this
gesture will be recorded by the EMG sensors embedded in
the smart wristband and payment device. Then, both devices
use the captured EMG signal to generate secret key. As both
of their measurements are from the same source, they can
reach consensus on the same secret key at high success rate
while attackers have no clue about the secret key.

To realize such system, there are several challenges: First,
it is not clear whether the randomness in EMG variation is
sufficient to generate robust secret key. To answer this ques-
tion, we formulate the generation of EMG as a random pro-
cess model and gain several insights from theoretical study
and empirical experiments on volunteers. Another challenge
stems from the design of secret key extraction: although both
devices involved in pairing are measuring EMG from the
same source, there are still some inconsistency of the cap-
tured signals due to the different install locations, electrode
attenuation, and hardware imperfection. To address this is-
sue, we design a secret key generation algorithm based on
the temporal variation shapes of EMG signal and leverage
error correction coding [19] to alleviate the discrepancy. Ex-
tensive experimental results have confirmed the effectiveness

and efficiency of our algorithm.
Our contributions in this work lay in the following as-

pects:
• As far as we know, we are the first to explore the possi-

bility of using EMG to enable secure pairing for wear-
able devices. We have demonstrated that EMG is a good
information source to build a secure pairing system due
to its physical characteristics and stochastic nature.

• We propose EMG-KEY, a secure paring system for
wearable devices, that can defend against many strong
attackers and provides high security. In this system, we
design and implement secret key generation algorithm
based on the temporal shape variations of EMG signal
and alleviate the inconsistency via error correcting cod-
ing.

• We comprehensively evaluate the performance of our
system under different scenarios with 10 volunteers.
The results indicate that our system can archive a high
bit rate at 5.51 bit/s while maintaining a successful pair-
ing rate of 88.84%. Also, the evaluation results with the
presence of adversaries demonstrate our system is se-
cure to strong attackers who can eavesdrop proximate
wireless communication, capture and imitate the users’
paring process with the help of camera.

The rest of paper is organized as follows. We first briefly
introduce the preliminary of EMG and investigate its feasi-
bility as a secret source, then define the threat model in Sec-
tion 2. The system design and detailed implementation are
discussed in Section 3. In Section 4, we describe our ex-
perimental methodology and evaluation metrics. Then, we
present the performance of our secret key generation and re-
sistance to attacks in Section 5 and Section 6. The discussion
and related work are provided in Section 7 and Section 8, fol-
lowed by a conclusion in Section 9.

2 Feasibility & Threat Model
In this section, we start with a brief introduction of EMG,

and then formulate its generation as a random process model.
From this model, we can theoretically verify that the ran-
domness of EMG is sufficient for secure pairing. Apart from
this, we also conduct empirical experiment on volunteers to
demonstrate the feasibility of our system. After that, we dis-
cuss our target scenario and define the attack model.

2.1 Preliminary
The generation of physical movement in human body in-

volves the activation of skeletal muscles [37]. As showed
in Figure 2, skeletal muscle consists of dozens of elongated,
cylindrical cells known as muscle fibers, which are attached
to the bones of skeletons via tendons. Each muscle fiber is in-
nervated by a moto-neurons and the contact region is termed
as the neuromuscular junction, in which each axon lies in a
groove on the surface of the muscle fiber called motor end-
plate. The moto-neuron and the set of muscle fibers it inner-
vates compose the basic function unit of muscle, i.e., motor
unit (MU).

It is through the contraction of muscle fibers that we form
the movement. It starts with an electrical excitation sent from
our nerve system to the muscle fibers which activates the
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Figure 3. EMG modeling.

acetylcholine-gated channel in the end-plate and allows large
amount of positive sodium to flow into the muscle fiber [15].
This positive influx causes the local depolarization of the
fiber membrane and initiates the muscle fiber action poten-
tial. Such action potential spreads along the muscle fibers in-
nervated by this moto-neuron and results in their contraction.
The frequency at which the muscle fibers are stimulated by
their innervating axon is called the motor unit firing rate and
multiple motor units will be recruited during a movement to
meet requirement of output force.

By placing electrodes on the skin around the contracting
muscle, the electrical activity during muscle contraction can
be captured and the recorded data is the surface EMG signal.

2.2 EMG Modeling
As a complicated biological process, EMG begins with

the nerve impulse sent from moto-neuron, which spreads
over end-plates and yields the muscle fiber action potential.
The action potential propagates along fibers and tissues, and
eventually captured by electrodes on the skin. To quantify
this process, let us consider an example showed in Figure 3,
in which a set of muscle fibers are innervated by two moto-
neurons. The contact regions where the axons of neurons
meet muscle fiber are labeled as z0, ...,zi, and the mean is zm.
Let d be the average distance between the muscle and skin is
defined a d, and w is the spacing between electrodes.

When a motor unit is recruited, the moto-neuron sends ex-
citation impulse to initiate the muscle fiber action potential.
It is evidenced [37] that the firing pattern of moto-neuron
is quasi-random, i.e., the average firing rate grows with the
increasing force requirement, but the occurrence of each im-
pulse is stochastic in nature; Moreover, the firing patterns of
different motor units are essentially independent [22]. Let
random function Rq(t) describe the firing pattern of the q-th
motor unit. Then, the overall firing pattern of motor units
recruited is:

R(t) =
Q

∑
q=1

Rq(t) (1)

When the nerve impulse arrives the muscle fiber, it causes
the depolarization of the fiber membrane and generates the
muscle fiber action potential. This action potential propa-
gates from end-plates to electrodes at a conduction velocity

u and can be described as:

p(t) = Aut(2−ut)e−ut , (2)

where A is a scale factor and u is the conduction velocity,
both of which are determined by fiber membrane properties.

However, one may notice that the geographic distribution
of end-plates, i.e., the starting point of the action potential
propagation, are quite different. This can be viewed as time
shift from zm and described by the convolution of delta shift
function:

D(t) =
M

∑
m=1

δ(t− τm), (3)

where τm = zm−z̄
u is the time shift caused by the distance be-

tween zm and z̄.
Combining these factors together, we can quantify the

EMG generation using the following model:

EMG(t) =
Q

∑
q=1

{
Rq(t)∗Dq(t)∗ p(t)∗ e(t)

}

=
Q

∑
q=1

{
Rq(t)∗

[ Mq

∑
m=1

δ(t− τm)∗ p(t)
]
∗ e(t)

}
, (4)

where Q is the number of motor units which are recruited
in contraction, Mq is the number of muscle fibers innervated
by q-th motor unit. The e(t) is the transfer function of elec-
trodes, which is defined by the electronic properties of elec-
trodes and its relative location with respect to muscle.

From this model, we can gain several useful insights:
• To generate a movement, it often requires multiple mo-

tor units to be involved. However, the number of re-
cruited motor units Q is determined by the force re-
quirement. Thus, even under the same movement, the
number of recruited motor units can be different.

• Even the gesture can be captured by camera and the out-
put force might be inferred, the attacker still is agnostic
about user’s EMG signal due to the stochastic nature of
firing patterns of motor units.

• The personal difference in the end-plate distribution,
conduction velocity of muscle fiber membrane and even
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Figure 4. Prototype of EMG-KEY, which consists of a
wristband and payment device, both of which are equipped
with Olimex EMG sensors and controlled by Arduino
UNO board.
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Figure 5. Rectified EMG signals from user, pay-
ment device, and attacker.

muscle fatigue level also introduce additional discrep-
ancies between the EMG signal generated users and at-
tackers.

Apart from these observations, we also find the current
volume of EMG signal is quite small (around ±1.5mv), and
propagation area is limited to the skin above contracting
muscles, which implies eavesdropping without physically
contacting in close proximity is extremely hard. All of these
observations suggest that EMG could be a good randomness
source to generate secret key.

2.3 EMG as Secret Source
To validate the feasibility of using EMG to generate secret

key, we build a prototype based on Arduino UNO develop-
ment board [2] and Olimex EMG shield [8]. As showed in
Figure 4, the prototype consists of a wristband and a pay-
ment device, both of which are equipped with Olimex EMG
sensors.

Similar to the mobile payment scenario, we ask a volun-
teer A to wear our wristband, and put his hand on the pay-
ment machine. Meanwhile, there is another volunteer E act-
ing as the attacker, who is also wearing the same type of
wristband and can observe every gesture made by user A. To
simulate the worst case, both user and attacker are required
to perform an easy-to-imitate gesture, i.e., slowly clutch their
fist and then release it, and repeat it for 3 times.

Figure 5 gives an example of the rectified EMG signal
(for the details of rectification, see Section 3) obtained from
wristbands of user A and attacker E, and the payment de-
vice B. The pairwise Pearson correlation coefficients are also
present in Table 1. We can notice some interesting observa-
tions: (i) For the same person, even he is making the same
gesture, the EMG measurement can be different for each
time; (ii) Although it does exists some slight differences,
the EMG signals recorded from user A’s wristband and pay-
ment device are highly simimar in their variation shapes and
strongly correlated, evidenced by a correlation coefficient of
0.98. (iii) The correlation between attacker and legitimate
devices are not minor (around 0.69). Such correlation de-
rives from the fact that the attack can clearly observe the
gesture and easily imitate it. As the EMG amplitude is a
quasi-random process with respect to output force, the gen-
eral rise and drop trend at the begin and end of gesture can

Table 1. Pearson correlation coefficient among user A,
payment device B and attacker E

corr(A, B) corr(A, E) corr(B, E)
0.98 0.69 0.66

be easily imitated, but it fails on the matching of the small
scale variation during the gesture.

These observation corresponds to our insights from EMG
modeling in Section 2.2, which provides additional support
for the feasibility of using EMG signal as secret source.

2.4 Threat Model
In our scenario, two legitimate devices, both of which

does not have priori about each other, would like to commu-
nicate confidentially. We assume both devices are equipped
with EMG sensors. To associate them successfully, the user
need to put them close (around 4 cm) above the acting mus-
cle and physically contact with the skin.

For the threat model, we assume there exists a powerful
attacker, who know the exact details of our system and can
observe all the gestures made by user, or even use camera
to capture it for further analysis. Besides, he can imitate the
same gesture as user’s. Moreover, all the packets transmit-
ted through the wireless channel can be eavesdropped by the
attacker.

In such a threat model, the attacker can first record the
user’s gesture and wait until the successful association be-
tween legitimate devices, then starts to eavesdrop and save
all the traffic transmitted through this communication link.
After that, he can imitate user’s gesture and use the same se-
cret key generation algorithm to produce a secret key, and
then try to use such key to decode the encrypted packets. We
term such an attack as copy attack.

3 System Design
In this section, we present the design of EMG-KEY in de-

tail. We start with the rectification process and noise removal
of raw EMG signal, introduce the secret key generation, and
then move to the discussion on how to alleviate the discrep-
ancies caused by electrodes transfer function and hardware
imperfection. The Figure 6 provides an overview of our sys-
tem.
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3.1 Pre-processing
As discussed in Section 2.1, the EMG signal can be mod-

eled as the convolution result of firing pattern of motor-
neurons, distribution of end-plates, muscle fiber action po-
tential and electrode transfer function. To magnify the effect
of neuron firing pattern, rectification is a common applied
approach [22]. The Root-Mean-Square-based rectification
of EMG signal x(t), is defined as:

EMGrect(t) =

√[ 1
T

∫ T

t−T
x2(τ)dτ

]
, (5)

where T is the window size which controls the trade-off be-
tween smooth envelope against transient variations of EMG
signal. In our system, we set this value to be 0.8 seconds.

Also, during the recording of EMG, there are many
sources of noise and interference, such as the electrical noise
caused by the friction between electrodes and skin, or the
power line interference. We notice that the most energy of
noise are either less that 10 Hz (friction noise) or concen-
trate around 50 Hz (power line interference, the frequency of
which can be different among countries). Besides, the ma-
jority of arm EMG is above 20 Hz [15]. Thus, a high-pass
filter with cut-off frequency of 15 Hz and a notch filter im-
plemented based on Chebyshev IIR filter are adopted to alle-
viate the interference of these noises . Figure 7(a) and 7(b)
show an example of raw EMG and corresponding rectified
signal.

By applying the rectification and filtering on raw EMG
measurement, we can obtain the rectified EMG. In what fol-
lows, we demonstrate how to generate secret key based on
it.
3.2 Secret Key Generation

The goal of secret key generation scheme is to fully ex-
ploit the randomness of EMG signal and encode into secret
bits as high rate as possible. To this end, a commonly-used
approach is to divide the EMG signal into segments, and then
encode the signal by quantizing the segment amplitude into
several levels. Such a method can preserve most information
of the signal, while it may also introduces many additional
mismatched bits, as we can observe in Figure 5 that the sig-
nal amplitudes of legitimate devices are not exactly coinci-
dent.

Apart from the differences existed in EMG amplitude, we
also notice that, compared with amplitude volume, the varia-
tion trends of legitimate devices are highly correlated. More-
over, the variation shapes of attacker’s EMG are significantly
different from the legitimate devices. Thus, we choose to en-
coding the EMG signal by using their variation shapes.

Our encoding algorithm is consists of three steps: First,
divide the rectified EMG S into small segments of size w. For
each segment, we define three templates of variation shapes,
i.e., rise, drop and stay according to their amplitude varia-
tion. After that, we use Fast Dynamic Time Warping [28] to
compute the distance between segment and shape templates
and find out its most-matching shape. Then, we use the bi-
nary representation of corresponding shape ID as the secret
key. Algorithm 1 elaborates this process.

Algorithm 1 Shape-based Secret Key Generation.
Input:

Rectified EMG signal S, coding window w
Output:

Secret bit list L = [c0,c1, ...,cn]
1: ind← 0
2: while ind +w < size(S) do
3: s = S[ind : ind +w]
4: rise = [min(s)+ i∗d/w for i in 0 : w]
5: drop = [max(s)− i∗d/w for i in 0 : w]
6: stay = [max(s)−min(s)

2 for i in 0 : w]
7: template list T ← [rise,drop,stay]
8: dis← ∞,c← NULL
9: while tid < size(T ) do

10: d = f astDTW (s,T [tid]).
11: if d < dis then
12: c← toBinary(tid)
13: dis← d
14: end if
15: end while
16: L← c
17: end while
18: return L

Let V be the number of possible variation shapes. Since
we translate the shape code obtained from each segment into



0 2000 4000 6000 8000 10000

ch0(raw)
440

460

480

500

520

540

560

580

600

0 2000 4000 6000 8000 10000

ch1(raw)
350

400

450

500

550

600

650

700

0 2000 4000 6000 8000 10000
Time (ms)

350

400

450

500

550

600

650

700

0 2000 4000 6000 8000 10000
ch0(rect)

0

5

10

15

20

25

0 2000 4000 6000 8000 10000
ch1(rect)

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000
ch2(rect)

0

10

20

30

40

50

60

R
aw

 E
M

G

(a) Raw EMG
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(b) Rectified EMG
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(c) Close-up of shape-based encoding

Figure 7. Flow of EMG-KEY.

two-bit binary code, the rate of secret bit generation can be
computed as:

bit rate =
1
w

log2 V, (6)

where V = 3 in our case, i.e., tid = {0,1,2}.
An example result of the shape-based encoding algorithm

is presented in Figure 7(c), in which the blue line is the recti-
fied EMG signal and the black line within each coding win-
dow is the approximated shape of this segment.
3.3 Reconciliation

After the secret key generation, each device ends up with
an n-bit secret key independently. However, due to the space
between the devices and imperfection in electrodes’ proper-
ties, e.g., signal amplification gain and resistance to noise,
the transfer function p(t) of each EMG sensor can be dif-
ferent. As a result, there are still some discrepancies in
the EMG variation shapes which inevitably leads to mis-
matching bits among the secret keys.

The purpose of reconciliation is to alleviate the mismatch-
ing of the secret keys between legitimate devices. The ra-
tionale is that, the secret keys of legitimate devices can be
viewed as two different distorted versions of the same signal
as both of them are derived from the same EMG source. By
employing the error correction coding [19], the number of
the mismatching bits can be reduced.

Specifically, given two legitimate devices A and B, the se-
cret keys they obtained from secret key generation are ka and
kb, the mismatching bits between which are defined as ε. Let
C(n,k) be an Error Correction code (ECC) that encodes k-bit
message into n-bit code to resist r-bit random error. Function
f (·) and g(·) are the corresponding encoding function and
decoding function. To perform the reconciliation, device A
first computes the offset δ between ka and its corresponding
codeword:

δ = ka⊕ f
(
g(ka)

)
, (7)

Then, device A transmits this offset data to device B via a
public communication link, e.g., WiFi or bluetooth. Once
device B receives the delta, it can deduce ka as follows:

ka′= δ⊕ f
(
g(kb⊕δ)

)
, (8)

If the mismatching rate ε can be roughly estimated, an ap-
propriate error correction code C can be leveraged to ensure
ka′ equals to ka with a high probability.

We understand this process not only reduces the mis-
matching bits between the secret keys of legitimate devices,
but also leaks a partial information about the secret key, as
the δ is transmitted over a public communication link and
may be eavesdropped by attacker. However, it can be theo-
retical proved that there are only (n− k) bits of information
leakage [34]. Moreover, since the secret key during is de-
rived from the random variation of EMG signal, the offset in-
formation δ in each pairing procedure varies independently.
Therefore, the attacker still cannot infer ka by observing δ.
To ensure that no partial information leakage, we can further
reduce every n-bit secret sequence to k-bit sequence, e.g.,
use g(ka) as the secret key instead of ka. As a result, after the
reconciliation, the valid bit generation rate will be reduced
by a factor of n−k

n .
In our implementation of EMG-KEY, we employ the bi-

nary Golay Code G(23,12) [19] in the reconciliation stage.
It is a perfect linear error-correction code, which encodes 12-
bit of data into a 23-bit word and can detect any 7-bit errors
or correct any 3-bit errors in each 23-bit block.

4 Experimental Methodology
Experiment Setup: In our experiment, we build up a

prototype of EMG-KEY as shown in Figure 4. It includes
a wristband and a device that acts as the payment device,
both of which are embedded with Olimex EMG/EKG sen-
sor [8] with a sampling frequency at 250 Hz controlled by
Arduino UNO develop board [2]. Based on this prototype,
we have implemented the shape-based secret key generation
scheme in Python 2.7 and performed the reconciliation via
Golay Code G23(23,12).

Testing Scenario: To conduct comprehensive evaluation,
we have recruited 10 volunteers (7 males and 3 females) to
conduct extensive experiments: Nine of them act as normal
users while one simulates the attacker. In each experiment,
the user is required to wear the wristband on his/her arm,
physically contact with the electrodes on the payment device
in proximity (around 4 cm) as showed in Figure 4, and then
perform a gesture to initiate a secure pairing. During this
process, an attacker who wears the same type of wristband
is standing nearby in such way that he can clearly observe
the gestures, and exactly imitate them. To simulate the worst
case in real application, we intentionally ask users to perform
simple gestures which are easy to be imitated, e.g., slowly
clutch then release fist. We evaluate the information leakage



during the reconciliation process by letting the attacker know
the exact offset data between legitimate devices during each
pairing process. All the the EMG signals measured from de-
vices, and corresponding secret keys generated during these
experiments are recorded for further analysis. Since we per-
form 10 experiments on each user, there are 30× 10 = 300
data in total.

Performance Metrics: Throughout the evaluation, four
metrics are employed to measure the performance of our sys-
tem.
• Bit generation rate is the number of valid secret bits we

can generate per second. A higher bit generation rate
implies a shorter pairing procedure and thus provides a
better user experience. In our system, the bit genera-
tion rate is directly determined by the lenthg of EMG
segment w, the number of predefined variation shapes
V and the choice of error correction code n,k:

BGR =
k

wn
log2 V, (9)

where V = 3 in our case.

• Bit Mismatching rate reflects the level of inconsistency
between secret keys. It is defined as the number of mis-
matched bits divided by the length of secret key:

BMR =
bitcount(ka 6= kb)

min(|ka|, |kb|)
. (10)

A low bit mismatching rate ensures the legitimate de-
vices to agree on the same secret key and pair success-
fully at high possibility. In our system, some factors
can obviously affect the bit mismatching rate, e.g., the
distance between devices, the choice of error correction
code, and even the complexity of gesture.

• Entropy is a measurement of information contained in
a data [20]. Given a random variable X = [x0,x1, ...,xi],
its entropy can be computed as:

H(X) =−∑
i

Pr[xi] log2 Pr[xi], (11)

where Pr[xi] is the probability of i-th value of X . In
our case, we use the segment-wise entropy to measure
the randomness information contained in secret key by
counting the frequencies of different variation shapes.

• Mutual information measures the mutual dependence
between two variables [20], which quantifies the
amount of information obtained about one random vari-
able X through the another variable Y as:

I(X ;Y ) = ∑
y∈Y

∑
x∈X

p(x,y) log
p(x,y)

p(x)p(y)
. (12)

In our evaluation, we use this metric to measure the in-
formation leakage between user and attacker. If the mu-
tual information between X and Y is zero, then it means
we can not gain any information about Y by only ob-
serving X , or vice versa.
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Figure 8. The bit rate before reconciliation. A small cod-
ing windows size results in high bit rate, but reduces the
information contained in the generated key.

5 Performance of Secret Key Generation
This section evaluates the performance of our secret key

generation scheme.
We begin with the examination on the choice of coding

windows size and error correction code, which directly de-
termine the bit generation rate and bit mismatching rate of
our system. According to the result, our system can generate
secret bits at a rate of 5.51 bit/s, while retains a low bit mis-
matching rate by employing Golay Code in the reconciliation
stage.

After that, we move to the investigation on the impact of
confounding factors, namely, the distance between devices,
the placement of electrodes and the gesture complexity. The
evaluation results demonstrate that, by placing the devices
within 4 centimeters, our system can provide a good perfor-
mance with a simple gesture and is robust to the electrode
placement.

5.1 Effect of Parameters
5.1.1 Bit Generation Rate

An important performance indicator for a secret key gen-
eration scheme is how fast it generates secret bits. For our
system, the bit generation rate before reconciliation directly
depends on the coding window size w used to segment EMG
signals in the shape-based secret key generation. Although
a small coding window gives us a high bit generation rate, it
also reduces the information contained in the generation se-
cret key as the uncertainty of possible variation shapes within
each window becomes smaller. As we can image, if we set
the coding window size to an extreme small value, then all
the variations in each coding window will be very minor
and can be approximated by a horizontal-line, i.e., the “stay”
shape.

To find out the optimal coding window size, we compute
the bit generation rate and segment-wise entropy of gener-
ated secret keys with respect to different values of w. As
shown in Figure 8, we observe that, with the growth of cod-
ing window size, the bit generation rate drops quickly, but
the entropy contained in each segment increases and then
converges to 1.54 bits per segment (Theoretically, maxi-
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Figure 9. Performance of different error correc-
tion coding scheme. Golay Code outperforms
the other ECC codes.
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Figure 10. The bit mismatching rate under different
distances between legitimate devices. A larger dis-
tance boosts the inconsistency in devices’ EMG mea-
surements and thus results in more mismatching bits
in generated secure key.

mum entropy= −∑
3
1

1
3 log2

1
3 ≈ 1.58bit/segment). To pre-

serve sufficient randomness, we set the coding windows size
to 0.15 seconds in our system, which leads to a bit generation
rate of 10.57 bit/s and 1.51 bits information per segment.

Note that this is not the final bit rate of EMG-KEY, be-
cause the reconciliation process will sacrifice a part of bit
rate for the alleviation of mismatching bits due to the adop-
tion of error correction coding. In the next section, we will
analyze its impact on system performance.
5.1.2 Choice of Error Correction Code

Due to the spacing between devices, differences in elec-
trodes’ properties and hardware imperfection, there are some
discrepancies in the EMG measurements of the legitimate
devices, which inevitably leads to mismatching bits among
the generated secret keys. To alleviate such inconsistency,
error correction code is adopted in the reconciliation stage.
As a result, the choice of error correction coding algorithm,
as well as its setting, i.e., n and k, do not only define the
bit mismatching rate of our system, but also causes a loss of
valid bit rate.

To examine the effectiveness of different ECC codes,
three candidate codes are employed: (i) Hamming Code,
which is a linear perfect error correction code that encodes
4-bit data into 7-bit code by adding 3 parity bits. (ii) Go-
lay code, a well-known linear code which translates 12-bit
message into 23 bits in such a way that any 3-bit error can
be corrected. (iii) Reed-Solomon code (RS) is a cyclic code
designed to detect and correct multiple errors. By adding
check symbols to the raw data, a RS code, RS(n, k), can cor-
rect up to b n−k

2 c bits of error. Such property make it suit-
able for burst errors and thus is widely adopted in many data
storage applications [19]. Table 2 lists the ECC codes used
in our evaluation, plus their parameters and properties, i.e.,
code word length n, code length k, error-correcting ability r,
information leakage and bit loss ratio.

Table 2. Candidates of error correction codes
Code n k r Leakage Bit loss
Hamming Code 7 4 1 0.43 0.57
Golay Code 23 12 3 0.48 0.52
RS(7, 3) 7 3 2 0.57 0.43
RS(15, 5) 15 5 5 0.67 0.33
RS(15, 3) 15 3 6 0.8 0.2

Additionally, we collect a data set of raw EMG signals
and corresponding secret keys from 10 users as described in
Section 4. The average bit mismatching rate before recon-
ciliation of this data set is 0.065 and the standard deviation
is 0.029. We feed these data into the reconciliation process
with different ECC codes and compare their performances in
Figure 9.

From this figure, we find that, although Reed-Solomon
Code with n= 15,k = 3 has the lowest average bit mismatch-
ing rate, Golay code G(23,12) is a better choice as it per-
forms more stably among different data records. Besides,
we notice the standard deviation of linear ECC codes, e.g.,
Hamming Code and Golay Code, are generally smaller than
the Reed-Solomon code. This can be explained by the fact
that Reed-Solomon code may introduce more mismatching
bits if the number of mismatching bits exceeds its correction
ability due to its nonlinear nature.

According to this result, we adopt the Golay Code,
G(23,12), in our system and use it in the rest of evalua-
tions. According to Equation 9, the final bit generation rate
of EMG-KEY is 12

0.15×23 × log2 3 ≈ 5.51 bit/s. Such bit rate
outperforms the conventional PIN-code-based secure pair-
ing, in which the average bit rate is 4.96 bit/s [11].
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Figure 11. Illustration of elec-
trodes placements. The distances
among different placements are 4
centimeters while the spacing be-
tween wristband and payment de-
vice in each experiment is fixed to
2 centimeters.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

loc1 loc2 loc3

B
it

 m
is

m
at

ch
 r

at
e

Electrode locations

w/o ECC w/ ECC

Figure 12. Bit mismatching rate of
different electrode placements. Lo-
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stronger and less interfered in this
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Figure 13. Entropy of secret
key generated at different electrode
placements. They are relatively sta-
ble, which suggests different place-
ments of electrodes are acceptable.

5.2 Impact of Confounding Factors
5.2.1 Secure Distance between Devices

In our application scenario, both legitimate devices need
to be placed on the skin closely to ensure a secure pairing.
Since EMG signal is a subtle electrical activity, it can only be
precisely sensed near the contracting muscles. In addition,
the EMG signals measured by devices are actually a compo-
sition of several individual EMG signals from different mus-
cles. Moreover, as a complex organ, a human arm consists of
23 muscles, each of which has different functions [33]. Due
to these facts, we can image large distance between the legit-
imate devices can increase their inconsistency in the EMG
measurements, which eventually introduces additional mis-
matching bits.

To evaluate how close the devices need to be placed to en-
sure a successful pairing, we conduct extensive experiments
on the volunteers by placing the wristband and payment de-
vice in different distances. Figure 10 shows the correspond-
ing bit mismatching rate between legitimate devices.

From this figure, we observe a growing trend of bit mis-
matching rate with the increase of distance between devices,
which corresponds to our previous analysis. Also, a distance
within 4 centimeters can still maintain a good performance
with the help of reconciliation, but larger distance than this
will exceeds the correcting ability of the ECC code and ends
up with a high mismatching rate.
5.2.2 Placement of Electrodes

Apart from the distance between devices, another factor
deriving from the subtle propagation nature of EMG and
complex composition of human arm muscle is the placement
of electrodes. Although the muscles of forearm are elongated
and often distributed over the whole forearm, one may con-
cern whether there is difference if we place the electrodes at
different locations.

To evaluate the impact of electrode placement, we design
three groups of experiments, in each of which the electrodes
of the wristband and payment device are placed at different
locations as shown in Figure 11. The distances among differ-
ent placements are 4 centimeters while the spacing between

wristband and payment device in each experiment is fixed to
2 centimeters.

We first evaluate the bit mismatching rate under each
placement and the result is presented in Figure 12. An imme-
diate observation from this figure is that the mismatching rate
at location 2 is lower than location 1 and 3. This is because
that, the location 1 is relatively far away from the contracting
muscles, while the location 3 is often covered with more fat
and tissues, which is evidenced to be able to hinder the prop-
agation of EMG [37]. Compared with these two locations,
the EMG measured at location 2 is much stronger and less
interfered, which leads to a better performance. However,
we also find that, with the help of reconciliation process, the
performance at location 1 and 3 are still acceptable as most
mismatching bits in secret keys can be significantly reduced
by error correction code.

Also, to quantify the randomness level of secret keys gen-
erated under different electrode placements, the segment-
wise entropy is computed and reported in Figure 13. A
higher segment-wise entropy indicates more randomness
will be included in each segment and thus the secret key is
harder to be attacked. Note that, since we use three prede-
fined shapes to approximate the EMG variation in the shape-
based secret key generation, the theoretical upper-bound of
the segment-wise entropy is achieved if all these shapes oc-
cur in the secret key randomly and uniformly. Thus, the
maximum can is computed as: max(H) = −∑

3
1

1
3 log2

1
3 ≈

1.58bit/segment, which is represented by the dashed line
above the bars. According to this figure, the entropies of se-
cret keys generated under different electrode placement are
relative identical and all of them are approaching the the-
oretical maximum. This indicates most of the information
of EMG randomness is preserved no matter where the elec-
trodes are placed.
5.2.3 Gesture Complexity

As our system requires users to perform a gesture to ini-
tiate the pairing process, one natural question is whether the
complexity of gestures can affect the system’s performance
and security level. This question comes along with an in-
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Figure 15. Effect of gestures with different com-
plexity.

tuitive idea that the high-complexity gestures are hard to be
imitated, which thus may introduce more robustness to at-
tacks.

To explore the answer, we design three gestures with in-
creasing complexity, namely, g1, g2 and g3. In g1, the
user slowly clutches the fist, then release it gently. The sec-
ond gesture, g2, requires users to clutch and release the fist
quickly and repetitively. In the last gesture with highest com-
plexity, the users are asked to randomly moves their fingers
quickly as they wants.

Figure 15 shows the performance of secret key genera-
tion under gestures of different complexity. We surprisingly
find that the bit mismatching rate is getting higher with the
growth of gesture complexity. Upon further analysis, this
turns out to be rooted in the fact that the complex gesture,
such as moving fingers randomly, is often accomplished by
the collaboration of several muscles, so there are multiple in-
dividual EMG signals interfered with each other during the
complex gesture. Moreover, some of individual EMG sig-
nals are quite minor and can be easily overwhelmed by the
others. As a result, the interference between individual EMG
signals leads to an obvious inconsistency in the EMG mea-
surements between legitimate devices, and eventually results
in the degradation of performance.

Given such frustrating result, a major concern is whether
the simple gesture can provide enough randomness for se-
cure pairing. To this end, we again employ the segment-
wise entropy to evaluate the randomness level provide by
gestures with different complexity and present the result in
Figure 15. We notice the complex gestures actually does not
provide information gain. Also, the entropy of simplest ges-
ture, i.e., slowly clutch and then release the fist, is about 1.51
bit/segment, which almost approaches the theoretical upper
bound of 1.58 bit/segment.

These two results implies that, although the high-
complexity gesture does not provide any additional enhance-
ment to our system, the simple gesture will suffice as it can
preserve enough randomness and provide a good bit mis-
matching rate.

6 Resistance to Attacks
In this section, we evaluate the security performance of

our system. Throughout the experiments, we assume there
exists a strong attacker who is able to:
• know every details of our pairing algorithm;

• stand in close proximity, precisely observe and capture
all the gestures made by users during pairing process;

• exactly imitate these gestures;

• eavesdrop and decode all the packets sent via a public
communication link, e.g., WiFi, Bluetooth or NFC;

In order to examine the our system’s robustness to such
strong attacker, we conduct extensive experiments on 10 vol-
unteers, in which nine of them act as normal users while one
simulates the attacker to imitate their gestures. Each user is
asked to perform the pairing process 30 times with presence
of attacker and there are 10× 30 = 300 pairing records in
total.

We start the evaluation with the analysis on the informa-
tion leakage to the attacker. The experiments demonstrate
the attacker can only obtain a negligible amount of informa-
tion about the legitimate device even he can exactly imitate
user’s gesture.

After that, we take a close look at the bit matching rate of
secret keys generated by different users and attackers, from
which we can find the bit mismatching rate of attacker is
significantly high even with the adoption of ECC code.

6.1 Information Leakage
To visualize the correlation between the EMG measure-

ments of devices, we present the pairwise scatter-plots of the
normalized EMG measurement of each pair of devices when
both user and attacker are performing the same gesture syn-
chronously in Figure 16.

From Figure 16(a), we can clearly observe that the EMG
signal from payment device increase linearly with respect
to the measurement from user’s wristband, which implies
there exists a strong correlation between them. On the other
hand, even through the attacker is imitating the user’s gesture
synchronously, his/her EMG measurement does not appear
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Figure 16. Flow of EMG-KEY.

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

B
it

 m
is

m
at

ch
 r

at
e

Users

user w/o ECC user w/ ECC attacker w/o ECC attacker w/ ECC

Figure 17. Bit mismatching rate of users and copy attackers.

much connection with user or payment device according to
Figure 16(b) and 16(c).

To further quantify the amount of information can be
learned by imitating the gesture, we compute pairwise mu-
tual information between devices in Table 3. We note that, by
measuring the EMG variation in close proximity, the wrist-
band can obtain 1.158 bits of information about the payment
device’s corresponding secret key. On the contrary, the at-
tacker, albeit imitating the gesture synchronously, can only
have 0.29 bits of information about it. This indicates, the le-
gitimate devices have 4 times more information about each
other than the attacker can have.

Table 3. Mutual information among user’s wristband A,
payment device B, and attacker’s devices E

A vs. B A vs. E E vs. B
Mutual info. 1.158 0.290 0.274

6.2 The Performance of Copy Attacker
In this section, we further assume that the attacker can

get the offset information δ transmitted in the reconciliation
stage between legitimate devices via eavesdropping, and try
to deduce their secret key during the pairing process.

In oder to simulate such attack, we design an experiment
in which the offset information δ between legitimate devices
is explicitly shared with the attacker via public communi-
cation and the same reconciliation is perform by attacker to

help the estimation of secret key used by legitimate devices.
The bit mismatching rate is used to quantify the possibility
that attacker can have the same secret key as legitimate de-
vices.

The evaluation result on 10 volunteers (30 pairing exper-
iments for each volunteer) is reported in Figure 17. We can
find that the bit mismatching rate between user’s wristband
and payment device can be efficiently reduced by the rec-
onciliation process (the final average bit mismatching rate is
8.924× 10−3). However, the attacker can not benefit from
such process: the bit mismatching rate between the key de-
duced by attacker and the real secret key used even increase
after the adoption of the error correction code, which ends
up with an average bit mismatching rate of 0.298. This is be-
cause that, if the number of mismatched bits exceeds the er-
ror correcting ability of ECC code, some matched bits might
be erroneously flipped and thus more mismatching bits are
introduced.

As a result, it is impossible for attacker to hack the
pairing process even he can eavesdrop the offset informa-
tion. Consider using a 4-bit PIN code as traditional Blue-
tooth pairing, which has a equivalent 13.2 secret bits [34],
the successful pairing rate between legitimate devices is
(1− 0.008924)13.2 ≈ 88.84%, while the attacker can only
have (1−0.298)13.2 ≈ 0.94% chance to deduce the same se-
cret key.



7 Discussion
In this section, we discuss the practical issus of our sys-

tem, and possible directions of future exploration.
EMG Wearables. As the major security of our system

relies on the employment of EMG signal, one may question
whether the EMG sensor is available for wearable devices.
According to our study, there are already several wearable
products are embedded with EMG sensors, e.g., Myo arm-
band [7], Athos gear [3], and Leo smart band [6], which
enable many promising applications. For instance, the Myo
armband can recognize the user’s gesture and provides a new
way for human-computer interaction, while the Athos gear
can monitor the contraction state of muscle and be used to
help physical training. We envision that, in the near future,
there will be more wearable devices equipped with EMG
sensors due to the fast development of Augmented Reality
(AR) and healthcare market [4, 41].

Threat of electromagnetic emanation. Recent studies
have exposed a new threat derived from electromagnetic em-
anation (EM). By using the electromagnetic nature of de-
vices, it is possible for adversaries to eavesdrop the infor-
mation [25] or even perform the EM signal injection attack,
in which the attacker manipulates the input to the device by
emitting chosen electromagnetic waveforms [47]. However,
such attacking techniques can not defeat our system. First,
due to the fact that the EMG voltage is unobtrusive (often
withing ±10 mv), it is extremely hard to eavesdrop its EM
radiation in practical. Also, the EM signal injection attacks
can be prevented in the design of hardware.

Multi-Channel EMG. To make our system more reli-
able and practical, there are some possible directions worth
to explore in the future. The first one is the adoption of
multi-channel EMG. To measure the muscle activity accu-
rately, many existing wearable devices are equipped with
more than one EMG sensor. We believe that the performance
of our system can be further enhanced if the EMG signals
from different channel can provide more information and
randomness. Also, our current system only employ three ba-
sic shapes to quantify the EMG variation, more fine-grained
quantization level can be adopted to improve the system’s
performance.

8 Related Work
8.1 Secure Pairing

Many techniques have been proposed to enable secure
pairing between mobile devices based on pre-shared secrets.
A variety of information sources have been exploited to
generate shared secret keys without prior information ex-
change. Such sources can be wireless channel measure-
ments [14, 26, 31, 35, 42], human motion [11, 36], vibra-
tion [9], or ambient environments [34, 45]. Azimi et al. [14]
are among the first to leverage the channel reciprocity to
generate secret keys from wireless signal strength. Jana et
al. [26] propose an environmental-adaptive key generation
scheme to boost the bit generation rate. Liu et al. [31] take
one step further by using the fine-grained channel state infor-
mation (CSI) as the reciprocal information to extract more
information for key generation in OFDM systems. Simi-
larly, Puzzle [42] leverages the frequency shapes of channel

measurements to obtain more robust secret bits. Checksum
Gestures [11] uses a single-continuous gesture to generate
an authentication code to replace the traditional PIN input
for wearables. Mayrhofer [36] establishes a secure link be-
tween two devices by shaking them together, and leverages
their trajectories as the shared information. instead of using
hand-incurred motion, Ving [9] leverages the vibration of a
desk as the shared secret for all devices on the desk. Ambient
environment based approaches authenticate the proximity of
two devices based on ambient wireless signals [34] or am-
bient audios [45]. Different from these approaches, EMG-
KEY leverages muscle contraction inside human body as the
source, which is secure to proximate eavesdroppers and even
camera-based shoulder-surfers.
8.2 EMG Analysis

Traditionally, EMG is used by clinic doctors and biomed-
ical scientist to study the muscle fatigue [17, 24, 30], neuro-
muscular diseases [16, 23, 46] and human kinesiology [10,
39]. In recent years, the EMG is also widely adopted to en-
able different promising applications, e.g., controlling pros-
thetic [13, 40], emotion recognition [18, 21], and speech
recognition [27, 32]. Apart from this, extensive effort has
been devoted to the exploration of using EMG as an inter-
face of Human-machine interaction [12, 29, 38, 43, 44]. As
a complementation, our work propose a method to leverage
EMG signal to pairing wearable devices.

9 Conclusion
In this work, we propose a secure pairing system for wear-

able devices by exploring the randomness embedded in the
EMG signal. We design a shape-based secret key generation
scheme and leverage error correction code to alleviate the in-
consistency between devices. Extensive experiments on ten
volunteers indicates our system is robust to many confound-
ing factors and can achieve a competitive bit generation rate
of 5.51 bit/s while maintaining a high successful pairing rate
around 88.84%. Also, evaluation result with the presence
of copy attackers demonstrate our system can defend against
strong attacks.
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